PrintForm Definitions automata 4 Sections AutomataTheory Doc

At: auto iso sym 1 1

1. Alph: Type
2. S1: Type
3. S2: Type
4. A1: Automata(Alph;S1)
5. A2: Automata(Alph;S2)
6. f: S1S2
7. Bij(S1; S2; f)
8. s:S1, a:Alph. f(A1(s,a)) = A2(f(s),a)
9. f(InitialState(A1)) = InitialState(A2)
10. s:S1. FinalState(A1)(s) = FinalState(A2)(f(s))

f:(S2S1). Bij(S2; S1; f) & (s:S2, a:Alph. f(A2(s,a)) = A1(f(s),a) S1) & f(InitialState(A2)) = InitialState(A1) S1 & (s:S2. FinalState(A2)(s) = FinalState(A1)(f(s)))

By: Inst Thm* f:(AB). Bij(A; B; f) (g:(BA). InvFuns(A; B; f; g)) [S1;S2;f]

Generated subgoal:

111. g:(S2S1). InvFuns(S1; S2; f; g)
f:(S2S1). Bij(S2; S1; f) & (s:S2, a:Alph. f(A2(s,a)) = A1(f(s),a) S1) & f(InitialState(A2)) = InitialState(A1) S1 & (s:S2. FinalState(A2)(s) = FinalState(A1)(f(s)))


About:
existsfunctionandallequalapplybooluniverse