is mentioned by
[is_list_mem_wf] | |
[same_range_sep_wf_inj] | |
[same_range_sep_wf] | |
Thm* (i:a. P(i) f(i) = 1 2) ({x:a| P(x) } ~ (Msize(f))) | [card_st_vs_msize] |
[card_split_decbl_squash] | |
Thm* (i:A. Dec(P(i))) Thm* Thm* ((i:AB(i)) ~ ((i:{i:A| P(i) }B(i))+(i:{i:A| P(i) }B(i)))) | [card_split_sigma_dom_decbl] |
Thm* (i:{i:A| P(i) }B(i)) ~ {v:(i:AB(i))| P(v/x,y. x) } | [card_sigma_st_dom] |
[card_split_decbl] | |
[card_quotient] | |
[set_functionality_wrt_one_one_corr_n_pred] | |
[set_functionality_wrt_one_one_corr_n_pred2] | |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype_sq] |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype] |
[partition_type] | |
[nonfin_eqv_unb_inf_iff_negnegelim] | |
[negnegelim_imp_notfin_imp_unb_inf] | |
[parallel_conjunct_imp] | |
Thm* (x:k. y:B(x). Q(x;y)) (f:(x:kB(x)). x:k. Q(x;f(x))) | [dep_finite_choice] |
Thm* (x:k. y:A. Q(x;y)) (f:(kA). x:k. Q(x;f(x))) | [finite_choice] |
Thm* Thm* ((x:AB(x)) ~ ((x:A st P(x)B(x))(x:A st P(x)B(x)))) | [card_split_prod_intseg_family_decbl] |
Thm* (1-1-Corr x:A,y:B. R(x;y)) Thm* Thm* (f:(AB), g:(BA). Thm* (InvFuns(A;B;f;g) & (x:A, y:B. R(x;y) y = f(x) & x = g(y))) | [one_one_corr_rel_vs_invfuns] |
[Dedekind_infinite_wf] | |
[productively_infinite_wf] | |
[unboundedly_infinite_wf] | |
Thm* (i:. Dec(P(i))) ({i:| P(i) & (j:. j<i P(j)) }) | [least_exists2] |
Thm* (i:k. Dec(P(i))) ({i:k| P(i) & (j:i. P(j)) }) | [least_exists] |
[decidable_vs_unique_nsub2] | |
Thm* ((x:A. B(x)) ~ (x':A'. B'(x'))) Prop | [one_one_corr_fams_wf] |
[subset_sq_remove_card] | |
[card_subset_vs_and] | |
[ifthenelse_distr_subtype_ooc] | |
Thm* ((A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* (& (x:A. R(x;x)) Thm* (& Finite(A)) | [no_finite_model] |
Thm* (A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* Thm* (k:. f:(kA). i,j:k. i<j R(f(i);f(j))) | [no_finite_model_lemma] |
[is_finite_type_wf] | |
[one_one_corr_2_functionality_wrt_eq] | |
[one_one_corr_2_wf] | |
[rel_1_1_eq_rel_1_1_b] | |
[rel_1_1_wf] | |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Bij({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Bij(Replace value k by f(m) in f)) | [delete_fenum_value_is_fenum_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k } Thm* (& Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (& Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_genW] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(i) {v:| Q(v) & v = k }) | [delete_fenum_value_comp2_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(m) {v:| Q(v) & v = k }) | [delete_fenum_value_comp1_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k }) | [delete_fenum_value_wf_gen] |
[is_one_one_corr_rel_wf] |
In prior sections: core well fnd int 1 bool 1 rel 1 quot 1 LogicSupplement int 2 IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html