(12steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
compose
iter
inverses
1
1.
A
: Type
f
,
g
:(
A
A
). InvFuns(
A
;
A
;
f
;
g
)
(
i
:
. InvFuns(
A
;
A
;
f
{
i
};
g
{
i
}))
By:
f
,
g
:(
A
A
). InvFuns(
A
;
A
;
f
;
g
)
(
i
:
,
x
:
A
.
g
{
i
}(
f
{
i
}(
x
)) =
x
) Asserted
Generated subgoals:
1
2.
f
:
A
A
3.
g
:
A
A
4. InvFuns(
A
;
A
;
f
;
g
)
5.
i
:
6.
x
:
A
g
{
i
}(
f
{
i
}(
x
)) =
x
6
steps
2
2.
f
,
g
:(
A
A
). InvFuns(
A
;
A
;
f
;
g
)
(
i
:
,
x
:
A
.
g
{
i
}(
f
{
i
}(
x
)) =
x
)
3.
f
:
A
A
4.
g
:
A
A
5. InvFuns(
A
;
A
;
f
;
g
)
6.
i
:
InvFuns(
A
;
A
;
f
{
i
};
g
{
i
})
4
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(12steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc