PrintForm
Definitions
exponent
Sections
AutomataTheory
Doc
At:
auto2
lemma
4
1
1
1
1
1.
Alph:
Type
2.
R:
Alph*
Alph*
Prop
3.
n:
4.
(
x:Alph*. R(x,x)) & (
x,y:Alph*. R(x,y)
R(y,x)) & (
x,y,z:Alph*. R(x,y) & R(y,z)
R(x,z)) & (
x,y,z:Alph*. R(x,y)
R((z @ x),z @ y)) & (
w:(
n
Alph*).
l:Alph*.
i:
n. R(l,w(i)))
5.
a:
Alph*
6.
b:
Alph*
7.
c:
Alph*
8.
(
n@0:
. (
l:Alph*. ||l|| < n@0
(
a.
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c))(l))
(
l:Alph*. ||l|| = n@0
(
a.
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c))(l)))
(
l:Alph*. (
a.
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c))(l))
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c)
By:
Analyze 8
Generated subgoals:
1
n@0:
. (
l:Alph*. ||l|| < n@0
(
a.
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c))(l))
(
l:Alph*. ||l|| = n@0
(
a.
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c))(l))
2
8.
l:Alph*. (
a.
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c))(l)
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c)
About: