PrintForm Definitions exponent Sections AutomataTheory Doc

At: auto2 lemma 7 1 1 1 1 1

1. Alph: Type
2. R: Alph*Alph*Prop
3. n:
4. L: Alph*
5. m:
6. x:Alph*. R(x,x)
7. x,y:Alph*. R(x,y) R(y,x)
8. x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)
9. x,y,z:Alph*. R(x,y) R((z @ x),z @ y)
10. w:(nAlph*). l:Alph*. i:n. R(l,w(i))
11. v:(mAlph*). l:Alph*. L(l) (i:m. R(l,v(i)))
12. Fin(Alph)
13. x: Alph*
14. y: Alph*
15. l: Alph*
16. L(l @ x) = L(l @ y)

k:(nn), l:{l:(Alph*)| ||l|| = k }. L(l @ x) = L(l @ y)

By: Inst Thm* R:(Alph*Alph*Prop), n:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) (a,b,c:Alph*. a':Alph*. ||a'|| < nn & R((a @ b),a' @ b) & R((a @ c),a' @ c)) [Alph;R;n]

Generated subgoals:

1 (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i)))
217. a,b,c:Alph*. a':Alph*. ||a'|| < nn & R((a @ b),a' @ b) & R((a @ c),a' @ c)
k:(nn), l:{l:(Alph*)| ||l|| = k }. L(l @ x) = L(l @ y)


About:
existsnatural_numbermultiplysetlistequalboolapply
universefunctionpropallimpliesandassert