PrintForm
Definitions
exponent
Sections
AutomataTheory
Doc
At:
auto2
lemma
7
1
1
2
1
2
1
1.
Alph:
Type
2.
R:
Alph*
Alph*
Prop
3.
n:
4.
L:
Alph*
5.
m:
6.
x:Alph*. R(x,x)
7.
x,y:Alph*. R(x,y)
R(y,x)
8.
x,y,z:Alph*. R(x,y) & R(y,z)
R(x,z)
9.
x,y,z:Alph*. R(x,y)
R((z @ x),z @ y)
10.
w:(
n
Alph*).
l:Alph*.
i:
n. R(l,w(i))
11.
v:(
m
Alph*).
l:Alph*. L(l)
(
i:
m. R(l,v(i)))
12.
Fin(Alph)
13.
x:
Alph*
14.
y:
Alph*
15.
(
l:Alph*.
L(l @ x) = L(l @ y))
(
k:
(n
n), l:{l:(Alph*)| ||l|| = k
}.
L(l @ x) = L(l @ y))
16.
(
l:Alph*.
L(l @ x) = L(l @ y))
(
k:
(n
n), l:{l:(Alph*)| ||l|| = k
}.
L(l @ x) = L(l @ y))
17.
t:
(n
n)
Dec(
l:{l:(Alph*)| ||l|| = t
}.
L(l @ x) = L(l @ y))
By:
Inst
Thm*
R:(T
Prop). Fin(T) & (
t:T. Dec(R(t)))
Dec(
t:T. R(t)) [{l:(Alph*)| ||l|| = t };
l.
L(l @ x) = L(l @ y)]
Generated subgoals:
1
Fin({l:(Alph*)| ||l|| = t
})
2
18.
t1:
{l:(Alph*)| ||l|| = t
}
Dec((
l.
L(l @ x) = L(l @ y))(t1))
3
18.
Dec(
t:{l:(Alph*)| ||l|| = t
}. (
l.
L(l @ x) = L(l @ y))(t))
Dec(
l:{l:(Alph*)| ||l|| = t
}.
L(l @ x) = L(l @ y))
About: