Thm* R1,R2:(T T Prop). ( x,y:T. R1(x,y)  R2(x,y))  Graph(x,y:T. R1(x,y)) Graph(x,y:T. R2(x,y)) | [rel-graph_functionality] |
Thm* For any graph
A,B,C:V List. A-- > *B @ C  A-- > *B & A-- > *C | [list-list-connect-append] |
Thm* For any graph
A:V List, x:V. A-- > *[x]  A-- > *x | [list-list-connect-singleton] |
Thm* For any graph
A,B:V List, i:V. A @ B-- > *i  A-- > *i B-- > *i | [list-connect-append] |
Thm* For any graph
i,j:V. [i]-- > *j  i-the_graph- > *j | [list-connect-singleton] |
Thm* For any graph
( x,y:V. Dec(x = y))  ( x,y:V. x-the_graph- > *y  x = y ( z:V. z = x & x-the_graph- > z & z-the_graph- > *y)) | [connect-iff] |
Thm* E:(T T  ). ( x,y:T. E(x,y)  x = y)  ( i:T, s:(T+T) List. member-left-paren(x,y.E(x,y);i;s)  (inl(i) s)) | [assert-member-left-paren] |
Thm* E:(T T  ). ( x,y:T. E(x,y)  x = y)  ( i:T, s:(T+T) List. member-right-paren(x,y.E(x,y);i;s)  (inr(i) s)) | [assert-member-right-paren] |
Thm* E:(T T  ). ( x,y:T. E(x,y)  x = y)  ( i:T, s:(T+T) List. member-paren(x,y.E(x,y);i;s)  (inl(i) s) (inr(i) s)) | [assert-member-paren] |
Thm* k: , L: List. k-1- > L^k  ( i: ||L||. L[i] < k) | [trivial-arrows] |
Thm* x: , n: . (n | x)  (x mod n) = 0 | [elim_divides] |
Def dfsl-traversal(the_graph;L;s) == df-traversal(the_graph;s) & ( i:Vertices(the_graph). (inl(i) s)  L-the_graph- > *i) & (( i:Vertices(the_graph). L-the_graph- > *i  non-trivial-loop(the_graph;i))  ( L1,L2:Vertices(the_graph) List. L = (L1 @ L2)  ( s1,s2:traversal(the_graph). s = (s2 @ s1) traversal(the_graph) & paren(Vertices(the_graph);s1) & paren(Vertices(the_graph);s2) & ( j:Vertices(the_graph). ((inl(j) s1)  L1-the_graph- > *j) & ((inl(j) s2)  L2-the_graph- > *j & L1-the_graph- > *j))))) | [dfsl-traversal] |