Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjm-graph Def adjm-graph(A) == < vertices = A.size, edges = {p:(A.sizeA.size)| (A.adj(1of(p),2of(p))) }, incidence = e.e >
adjm-vertex-accum Def adjm-vertex-accum(M;s',x.f(s';x);s) == primrec(M.size;s;x,s'. f(s';x))
adjm_size Def t.size == 1of(t)
Thm* t:AdjMatrix. t.size
adjmatrix Def AdjMatrix == size:sizesize
Thm* AdjMatrix Type
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm* T,T':Type, l:T List, y:T', f:(T'TT'). list_accum(x,a.f(x,a);y;l) T'
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
primrec Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive)
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T
upto Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive)
Thm* i,j:. upto(i;j) {i..j} List

About:
productproductlistconsnil
list_indboolifthenelseit
intnatural_numberaddsubtractless_thansetlambdaapplyfunction
recursive_def_noticeuniverseequalmemberpropimpliesall
exists!abstraction

Definitions graph 1 3 Sections Graphs Doc