Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjm_adj Def t.adj == 2of(t)
Thm* t:AdjMatrix. t.adj t.sizet.size
adjm_size Def t.size == 1of(t)
Thm* t:AdjMatrix. t.size
adjmatrix Def AdjMatrix == size:sizesize
Thm* AdjMatrix Type
filter Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l) T List
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm* T,T':Type, l:T List, y:T', f:(T'TT'). list_accum(x,a.f(x,a);y;l) T'
nat Def == {i:| 0i }
Thm* Type
primrec Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive)
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T
top Def Top == Void given Void
Thm* Top Type
upto Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive)
Thm* i,j:. upto(i;j) {i..j} List

About:
productlistconsnillist_indbool
ifthenelsevoidintnatural_numberaddsubtractsetisect
lambdaapplyfunctionrecursive_def_noticeuniversemembertopall
!abstraction

Definitions graph 1 3 Sections Graphs Doc