Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjl-graph Def adjl-graph(G) == < vertices = G.size, edges = x:G.size||G.out(x)||, incidence = e. < 1of(e),(G.out(1of(e)))[2of(e)] > >
adjl_out Def t.out == 2of(t)
Thm* t:AdjList. t.out t.size(t.size List)
adjl_size Def t.size == 1of(t)
Thm* t:AdjList. t.size
adjlist Def AdjList == size:size(size List)
Thm* AdjList Type
eq_adjl Def x =A= y == x=y
Thm* A:AdjList, x,y:Vertices(adjl-graph(A)). x =A= y
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
mkgraph Def < vertices = v, edges = e, incidence = f > == < v,e,f,o >
Thm* v,e:Type, f:(evv), o:Top. < vertices = v, edges = e, incidence = f > Graph
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
pairspreadspreadproductproductlistnil
list_indboolbfalsebtrueitint
natural_numberaddint_eqless_thansetlambda
applyfunctionrecursive_def_noticeuniversemembertopimplies
all!abstraction

Definitions graph 1 3 Sections Graphs Doc