Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
habs_numDef abs_num == n:. @m:. (n = rep_num(m )
Thm* abs_num  (hind  hnum)
hfunDef 'a  'b == 'a'b
Thm* 'a,'b:S. ('a  'b S
hindDef hind == 
Thm* hind  S
his_num_repDef is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))
Thm* is_num_rep  (hind  hbool)
hnumDef hnum == 
Thm* hnum  S
hrep_numDef rep_num == n:. ncompose(suc_rep;n;zero_rep)
Thm* rep_num  (hnum  hind)
iso_pairDef iso_pair('a;'b;P;rep;abs)
Def == (r:'babs(r) = (@a:'a. (r = rep(a)))) & type_definition('b;'a;P;rep)
Thm* 'a,'b:S, P:('b), rep:('a'b), abs:('b'a).
Thm* iso_pair('a;'b;P;rep;abs Prop
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
type_definitionDef type_definition('a;'b;P;rep)
Def == (x',x'':'brep(x') = rep(x'' 'a  x' = x'')
Def == & (x:'a(P(x))  (x':'bx = rep(x')))
Thm* 'a,'b:Type, P:('a), rep:('b'a). type_definition('a;'b;P;rep Prop

About:
boolintnatural_numbersetapplyfunctionuniverseequalmember
propimpliesandtrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc