| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| his_num_rep | Def is_num_rep
Def == m: .  P:  
Def == m: .  ((P(zero_rep)) ( n: . (P(n))  (P(suc_rep(n)))))  (P(m)) |
| | | Thm* is_num_rep (hind  hbool) |
|
| iso_pair | Def iso_pair('a;'b;P;rep;abs)
Def == ( r:'b. abs(r) = (@a:'a. (r = rep(a)))) & type_definition('b;'a;P;rep) |
| | | Thm* 'a,'b:S, P:('b  ), rep:('a 'b), abs:('b 'a).
Thm* iso_pair('a;'b;P;rep;abs) Prop |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| habs_num | Def abs_num == n: . @m: . (n = rep_num(m) ) |
| | | Thm* abs_num (hind  hnum) |
|
| hand | Def and == p: . q: . p q |
| | | Thm* and (hbool  hbool  hbool) |
|
| hbool | Def hbool ==  |
| | | Thm* hbool S |
|
| hind | Def hind ==  |
| | | Thm* hind S |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| hrep_num | Def rep_num == n: . ncompose(suc_rep;n;zero_rep) |
| | | Thm* rep_num (hnum  hind) |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |