Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
his_num_repDef is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))
Thm* is_num_rep  (hind  hbool)
iso_pairDef iso_pair('a;'b;P;rep;abs)
Def == (r:'babs(r) = (@a:'a. (r = rep(a)))) & type_definition('b;'a;P;rep)
Thm* 'a,'b:S, P:('b), rep:('a'b), abs:('b'a).
Thm* iso_pair('a;'b;P;rep;abs Prop
type_definitionDef type_definition('a;'b;P;rep)
Def == (x',x'':'brep(x') = rep(x'' 'a  x' = x'')
Def == & (x:'a(P(x))  (x':'bx = rep(x')))
Thm* 'a,'b:Type, P:('a), rep:('b'a). type_definition('a;'b;P;rep Prop
assertDef b == if b True else False fi
Thm* b:b  Prop
habs_numDef abs_num == n:. @m:. (n = rep_num(m )
Thm* abs_num  (hind  hnum)
hrep_numDef rep_num == n:. ncompose(suc_rep;n;zero_rep)
Thm* rep_num  (hnum  hind)
chooseDef @x:TP(x) == InjCase(lem({x:TP(x) }); xx, arb(T))
Thm* T:S, P:(TType). (@x:TP(x))  T
hnumDef hnum == 
Thm* hnum  S
natDef  == {i:| 0i }
Thm*   Type
Thm*   S

About:
boolifthenelseassertintnatural_numberdecide
setapplyfunctionuniverseequalmemberpropimplies
andfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc