(17steps total)
PrintForm
Definitions
Lemmas
hol
sum
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
hsum
iso
def
1
'a
,
'b
:S.
(
a
:
'a
+
'b
. abs_sum(rep_sum(
a
)) =
a
'a
+
'b
)
& (
r
:(
'a
'b
). is_sum_rep(
r
) = ((rep_sum(abs_sum(
r
))) =
r
))
By:
((RepeatMFor 2 (Analyze 0))
(
THEN
(
(L
((
Thm*
'a
,
'b
:S,
P
:(
'b
),
rep
:(
'a
'b
),
abs
:(
'b
'a
).
((Thm*
iso_pair(
'a
;
'b
;
P
;
rep
;
abs
)
((Thm*
((Thm*
(
a
:
'a
.
abs
(
rep
(
a
)) =
a
) & (
r
:
'b
.
P
(
r
) = ((
rep
(
abs
(
r
))) =
r
))))
THENA
Try (Complete Auto)
Generated subgoals:
1
1.
'a
: S
2.
'b
: S
'a
'b
S
1
step
2
1.
'a
: S
2.
'b
: S
iso_pair(
'a
+
'b
;
'a
'b
;is_sum_rep;rep_sum;abs_sum)
14
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(17steps total)
PrintForm
Definitions
Lemmas
hol
sum
Sections
HOLlib
Doc