Who Cites col? | |
col | Def Collection(T) == TProp |
Thm* T:Type{i'}. Collection{i}(T) Type{i'} | |
dec_lookup | Def dec_lookup(ds;x) == < d.typ | d < d ds | d.lbl = x > > |
Thm* ds:Collection(dec()), x:Label. dec_lookup(ds;x) Collection(SimpleType) | |
decls_mng | Def [[ds]] rho == [[d]] rho for d {d:dec()| d ds } |
Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl | |
dec | Def dec() == LabelSimpleType |
Thm* dec() Type | |
decl | Def Decl == LabelType |
Thm* Decl{i} Type{i'} | |
sigma | Def (d) == l:Labeldecl_type(d;l) |
Thm* d:Decl. (d) Type | |
sts_mng | Def [[sts]] rho == x:{x:SimpleType| x sts }. [[x]] rho |
Thm* sts:Collection(SimpleType), rho:Decl. [[sts]] rho Type | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
dec_typ | Def t.typ == 2of(t) |
Thm* t:dec(). t.typ SimpleType | |
dec_lbl | Def t.lbl == 1of(t) |
Thm* t:dec(). t.lbl Label | |
dec_mng | Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho |
Thm* rho:Decl, d:dec(). [[d]] rho Decl | |
dbase | Def x:y(a) == if a = x y else Top fi |
Thm* x:Label, y:Type. x:y Decl | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T) | |
col_map | Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T') | |
col_member | Def x c == c(x) |
Thm* T:Type, x:T, c:Collection(T). x c Prop | |
dall | Def D(i) for i I(x) == i:I. D(i)(x) |
Thm* I:Type, D:(IDecl). D(i) for i I Decl | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
decl_type | Def decl_type(d;x) == d(x) |
Thm* dec:Decl, x:Label. decl_type(dec;x) Type | |
st_mng | Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s) |
Thm* rho:Decl, s:SimpleType. [[s]] rho Type | |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A | |
case_default | Def Default = > body(value,value) == body |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case | Def Case(value) body == body(value,value) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_mk_dec | Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) |
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type | |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
top | Def Top == Void given Void |
Thm* Top Type | |
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
About: