| Who Cites trace consistent? | |
| trace_consistent |
Def trace_consistent(rho;da;R;t)
== |
|
Thm* | |
| clbl | Def $x == ptn_atom("$x") |
| col |
Def Collection(T) == T |
| Thm* | |
| decls_mng |
Def [[ds]] rho == [[d]] rho for d |
| Thm* | |
| dec |
Def dec() == Label |
| Thm* dec() | |
| decl |
Def Decl == Label |
| Thm* Decl{i} | |
| trace_env |
Def trace_env(d) == (( |
| Thm* | |
| st | Def SimpleType == Tree(Label+Unit) |
| Thm* SimpleType | |
| sigma |
Def ( |
| Thm* | |
| lbl |
Def Label == {p:Pattern| |
| Thm* Label | |
| lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) |
| Thm* | |
|
Thm* | |
| dec_mng | Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho |
|
Thm* | |
| st_mng |
Def [[s]] rho == t_iterate(st_lift(rho); |
| Thm* | |
| tproj | Def tre.P == tre.trace | tre.proj(P) |
| Thm* | |
| trace_env_proj | Def t.proj == 2of(t) |
|
Thm* | |
| ttrace | Def trace(l) == tree_leaf(ts_trace(l)) |
| Thm* | |
| typ | Def t == tree_leaf(inl(t)) |
| Thm* | |
| ptn_atom | Def ptn_atom(x) == inl(x) |
| Thm* | |
|
Thm* | |
|
Thm* | |
| col_member |
Def x |
| Thm* | |
| dall |
Def D(i) for i |
| Thm* | |
| ground_ptn |
Def ground_ptn(p)
== Case(p)
Case ptn_var(v) = >
false |
|
Thm* | |
| assert |
Def |
| Thm* | |
| ptn | Def Pattern == rec(T.ptn_con(T)) |
|
Thm* Pattern | |
| ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) |
| Thm* | |
|
Thm* | |
| st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) |
| Thm* | |
| term_mentions_guard |
Def term_mentions_guard(g;t)
== term_iterate( |
| Thm* | |
| term_iterate |
Def term_iterate(v;
p;
op;
f;
tr;
a;
t)
== t_iterate( |
| Thm* | |
| t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
|
Thm* | |
| trace_env_trace | Def t.trace == 1of(t) |
|
Thm* | |
| trace_projection |
Def tr | P == filter( |
| Thm* | |
| kind | Def kind(a) == 1of(a) |
| Thm* | |
|
Thm* | |
| pi2 | Def 2of(t) == t.2 |
|
Thm* | |
| ts_trace | Def ts_trace(x) == inr(inr(inr(inr(x)))) |
| Thm* | |
| tree_leaf | Def tree_leaf(x) == inl(x) |
| Thm* | |
|
Thm* | |
| tree | Def Tree(E) == rec(T.tree_con(E;T)) |
|
Thm* | |
| dbase |
Def x:y(a) == if a = |
| Thm* | |
| case_mk_dec | Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1) |
| eq_lbl |
Def l1 = |
|
Thm* | |
| ts_case |
Def ts_case(x)
var(a)= > v(a)
var'(b)= > p(b)
opr(f)= > op(f)
fvar(x)= > f(x)
trace(P)= > t(P)
end_ts_case
== Case(x)
Case ts_var(a) = >
v(a)
Case ts_pvar(b) = >
p(b)
Case ts_op(f) = >
op(f)
Case ts_fvar(x) = >
f(x)
Case ts_trace(P) = >
t(P)
Default = > |
|
Thm* | |
| case | Def Case(value) body == body(value,value) |
| case_default | Def Default = > body(value,value) == body |
| band |
Def p |
| Thm* | |
| case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
| case_ptn_var |
Def Case ptn_var(x) = > body(x) cont(x1,z)
== ( |
| ptn_con |
Def ptn_con(T) == Atom+ |
| Thm* | |
| top | Def Top == Void given Void |
|
Thm* Top | |
| case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
| pi1 | Def 1of(t) == t.1 |
| Thm* | |
| filter |
Def filter(P;l) == reduce( |
| Thm* | |
| decl_type | Def decl_type(d;x) == d(x) |
| Thm* | |
| bor |
Def p |
| Thm* | |
| tree_con |
Def tree_con(E;T) == E+(T |
| Thm* | |
| case_ptn_int |
Def Case ptn_int(x) = > body(x) cont(x1,z)
== ( |
| case_ts_trace |
Def Case ts_trace(x) = > body(x) cont(x1,z)
== ( |
| case_ts_fvar |
Def Case ts_fvar(x) = > body(x) cont(x1,z)
== ( |
| case_ts_op |
Def Case ts_op(x) = > body(x) cont(x1,z)
== ( |
| case_ts_pvar |
Def Case ts_pvar(x) = > body(x) cont(x1,z)
== ( |
| hd |
Def hd(l) == Case of l; nil |
|
Thm* | |
|
Thm* | |
| tl |
Def tl(l) == Case of l; nil |
|
Thm* | |
| case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
| case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
| reduce |
Def reduce(f;k;as) == Case of as; nil |
|
Thm* | |
| eq_atom |
Def x= |
| Thm* | |
| eq_int |
Def i= |
| Thm* | |
| case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
About: