WhoCites Definitions mb automata 4 Sections GenAutomata Doc

Who Cites rel subst2?
rel_subst2 Def rel_subst2(as;r) == mk_rel(r.name, map(t.term_subst2(as;t);r.args))
Thm* r:rel(), as:(LabelTerm) List. rel_subst2(as;r) rel()
term_subst2 Def term_subst2(as;t) == iterate(statevar v- > v statevar v'- > apply_alist(as;v;v') funsymbol f- > f freevar f- > f trace(P)- > trace(P) x(y)- > x y over t)
Thm* t:Term, as:(LabelTerm) List. term_subst2(as;t) Term
apply_alist Def apply_alist(as;l;d) == 2of((first p as s.t. 1of(p) = l else < l,d > ))
Thm* T:Type, as:(LabelT) List, l:Label, d:T. apply_alist(as;l;d) T
trace_consistent_rel Def trace_consistent_rel(rho;da;R;r) == i:||r.args||. trace_consistent(rho;da;R;r.args[i])
Thm* rho:Decl, r:rel(), da:Collection(dec()), R:(LabelLabel). trace_consistent_rel(rho;da;R;r) Prop
trace_consistent Def trace_consistent(rho;da;R;t) == g:Label. term_mentions_guard(g;t) subtype_rel(({a:([[da]] rho)| (R(g,kind(a))) } List); (rho(lbl_pr( < Trace, g > ))))
Thm* rho:Decl, t:Term, da:Collection(dec()), R:(LabelLabel). trace_consistent(rho;da;R;t) Prop
decls_mng Def [[ds]] rho == [[d]] rho for d {d:dec()| d ds }
Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl
tc Def tc(r;ds;da;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 & Q term_types(ds;da;de;r.args[0]) & Q term_types(ds;da;de;r.args[1]) Case R = > ||de.rel(R)|| = ||r.args|| & (i:. i < ||r.args|| (de.rel(R))[i] term_types(ds;da;de;r.args[i])) Default = > False
Thm* r:rel(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc(r;ds;da;de) Prop
term_types Def term_types(ds;da;de;t) == iterate(statevar x- > dec_lookup(ds;x) statevar x'- > dec_lookup(ds;x) funsymbol op- > < de.fun(op) > freevar x- > da trace(P)- > < lbl_pr( < Trace, P > ) > c1(c2)- > st_app(c1;c2) over t)
Thm* ds:Collection(dec()), da:Collection(SimpleType), de:sig(), t:Term. term_types(ds;da;de;t) Collection(SimpleType)
dec_lookup Def dec_lookup(ds;x) == < d.typ | d < d ds | d.lbl = x > >
Thm* ds:Collection(dec()), x:Label. dec_lookup(ds;x) Collection(SimpleType)
dec Def dec() == LabelSimpleType
Thm* dec() Type
decl Def Decl == LabelType
Thm* Decl{i} Type{i'}
record_pair Def {p} == {1of(p)}{2of(p)}
Thm* p:(DeclDecl). {p} Type
record Def {d} == l:Labeldecl_type(d;l)
Thm* d:Decl. {d} Type
rel Def rel() == relname()(Term List)
Thm* rel() Type
sig Def sig() == (LabelSimpleType)(Label(SimpleType List))
Thm* sig() Type
sts_mng Def [[sts]] rho == x:{x:SimpleType| x sts }. [[x]] rho
Thm* sts:Collection(SimpleType), rho:Decl. [[sts]] rho Type
relname Def relname() == SimpleType+Label
Thm* relname() Type
st_app Def st_app(c1;c2) == (s2c2.(s1c1.st_app1(s1;s2)))
Thm* c1,c2:Collection(SimpleType). st_app(c1;c2) Collection(SimpleType)
st_app1 Def st_app1(s1;s2) == Case(s1) Case a;b = > if st_eq(a;s2) < b > else < > fi Default = > < >
Thm* s1,s2:SimpleType. st_app1(s1;s2) Collection(SimpleType)
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
term Def Term == Tree(ts())
Thm* Term Type
trace_env Def trace_env(d) == ((d) List)(LabelLabel)
Thm* d:Decl. trace_env(d) Type
ts Def ts() == Label+Label+Label+Label+Label
Thm* ts() Type
sigma Def (d) == l:Labeldecl_type(d;l)
Thm* d:Decl. (d) Type
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
assert Def b == if b True else False fi
Thm* b:. b Prop
col Def Collection(T) == TProp
Thm* T:Type{i'}. Collection{i}(T) Type{i'}
col_accum Def (xc.f(x))(y) == x:T. x c & y f(x)
Thm* T,T':Type, f:(TCollection(T')), c:Collection(T). (xc.f(x)) Collection(T')
col_filter Def < x c | P(x) > (x) == x c & P(x)
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T)
col_map Def < f(x) | x c > (y) == x:T. x c & y = f(x) T'
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T')
col_member Def x c == c(x)
Thm* T:Type, x:T, c:Collection(T). x c Prop
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
mk_dec Def mk_dec(lbl, typ) == < lbl,typ >
Thm* lbl:Label, typ:SimpleType. mk_dec(lbl, typ) dec()
nat Def == {i:| 0i }
Thm* Type
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
lelt Def i j < k == ij & j < k
le Def AB == B < A
Thm* i,j:. (ij) Prop
not Def A == A False
Thm* A:Prop. (A) Prop
rel_mng Def [[r]] rho ds da de e s a tr == list_accum(x,t.x([[t]] 1of(e) s a tr);[[r.name]] rho 2of(e) ;r.args)
Thm* r:rel(), ds,da:Collection(dec()), de:sig(), rho:Decl, st1:Collection(SimpleType), e:{[[de]] rho}, s:{[[ds]] rho}, a:[[st1]] rho, tr:trace_env([[da]] rho). trace_consistent_rel(rho;da;tr.proj;r) tc(r;ds;st1;de) [[r]] rho ds st1 de e s a tr Prop
Thm* rho:Decl, ds,daa:Collection(dec()), da1:Collection(SimpleType), de:sig(), s:{[[ds]] rho}, e:{[[de]] rho}, tr:trace_env([[daa]] rho), r:rel(). closed_rel(r) tc(r;ds;da1;de) trace_consistent_rel(rho;daa;tr.proj;r) [[r]] rho ds da1 de e s tr Prop
rel_mng_2 Def rel_mng_2(r; rho; ds; da; de; e; s; s'; a; tr) == list_accum(x,t.x([[t]] 1of(e) s s' a tr);[[r.name]] rho 2of(e) ;r.args)
Thm* r:rel(), ds,da:Collection(dec()), de:sig(), rho:Decl, st1:Collection(SimpleType), e:{[[de]] rho}, s,s':{[[ds]] rho}, a:[[st1]] rho, tr:trace_env([[da]] rho). trace_consistent_rel(rho;da;tr.proj;r) tc(r;ds;st1;de) rel_mng_2(r; rho; ds; st1; de; e; s; s'; a; tr) Prop
sig_mng Def [[s]] rho == < op.[[s.fun(op)]] rho,R.[[s.rel(R)]] rho >
Thm* s:sig(), rho:Decl{i}. sig_mng{i:l}(s; rho) Decl{i}Decl{i'}
term_mng Def [[t]] e s a tr == iterate(statevar x- > s.x statevar x'- > s.x funsymbol f- > e.f freevar x- > a trace(P)- > tr.P x(y)- > x(y) over t)
rel_name Def t.name == 1of(t)
Thm* t:rel(). t.name relname()
term_mng2 Def [[t]] e s s' a tr == iterate(statevar x- > s.x statevar x'- > s'.x funsymbol x- > e.x freevar x- > a trace(P)- > tr.P x(y)- > x(y) over t)
sig_fun Def t.fun == 1of(t)
Thm* t:sig(). t.fun LabelSimpleType
tproj Def tre.P == tre.trace | tre.proj(P)
Thm* d:Decl, tre:trace_env(d), P:Label. tre.P (d) List
trace_env_trace Def t.trace == 1of(t)
Thm* d:Decl, t:trace_env(d). t.trace (d) List
trace_projection Def tr | P == filter(x.P(kind(x));tr)
Thm* d:Decl, tr:(d) List, P:(Label). tr | P (d) List
dec_lbl Def t.lbl == 1of(t)
Thm* t:dec(). t.lbl Label
kind Def kind(a) == 1of(a)
Thm* d:Decl, a:(d). kind(a) Label
Thm* M:sm{i:l}(), a:M.action. kind(a) Label & kind(a) Pattern
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
relname_mng Def [[rn]] rho e == Case(rn) Case eq(Q) = > x,y. x = y [[Q]] rho Case R = > e.R Default = > True
r_select Def r.l == r(l)
Thm* d:Decl, r:{d}, l:Label. r.l d(l)
rel_primed_vars Def rel_primed_vars(r) == reduce(t,vs. term_primed_vars(t) @ vs;nil;r.args)
Thm* r:rel(). rel_primed_vars(r) Label List
dec_mng Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho
Thm* rho:Decl, d:dec(). [[d]] rho Decl
st_list_mng Def [[l]] rho == reduce(s,m. [[s]] rhom;Prop;l)
Thm* l:SimpleType List, rho:Decl{i}. [[l]] rho{i} Type{i'}
st_mng Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s)
Thm* rho:Decl, s:SimpleType. [[s]] rho Type
subst_mentions_trace Def subst_mentions_trace(as) == reduce(a,b. mentions_trace(2of(a)) b;false;as)
Thm* as:(LabelTerm) List. subst_mentions_trace(as)
subtype Def S T == x:S. x T
trace_env_proj Def t.proj == 2of(t)
Thm* d:Decl, t:trace_env(d). t.proj LabelLabel
tvar Def l == tree_leaf(ts_var(l))
Thm* l:Label. l Term
dbase Def x:y(a) == if a = x y else Top fi
Thm* x:Label, y:Type. x:y Decl
term_mentions_guard Def term_mentions_guard(g;t) == term_iterate(x.false;x.false;x.false;x.false;x.x = g;x,y. x y;t)
Thm* t:Term, g:Label. term_mentions_guard(g;t)
st_eq Def st_eq(s1;s2) == Case(s1) Case a;b = > Case(s2) Case a';b' = > st_eq(a;a')st_eq(b;b') Default = > false Case tree_leaf(x) = > Case(s2) Case a';b' = > false Case tree_leaf(y) = > InjCase(x; x'. InjCase(y; y'. x' = y'; b. false); a. InjCase(y; y'. false; b. true)) Default = > false Default = > false (recursive)
Thm* s1,s2:SimpleType. st_eq(s1;s2)
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
find Def (first x as s.t. P(x) else d) == Case of filter(x.P(x);as); nil d ; a.b a
Thm* T:Type, P:(T), as:T List, d:T. (first a as s.t. P(a) else d) T
rel_args Def t.args == 2of(t)
Thm* t:rel(). t.args Term List
sig_rel Def t.rel == 2of(t)
Thm* t:sig(). t.rel Label(SimpleType List)
dec_typ Def t.typ == 2of(t)
Thm* t:dec(). t.typ SimpleType
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
dall Def D(i) for i I(x) == i:I. D(i)(x)
Thm* I:Type, D:(IDecl). D(i) for i I Decl
rev_implies Def P Q == Q P
Thm* A,B:Prop. (A B) Prop
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
decl_type Def decl_type(d;x) == d(x)
Thm* dec:Decl, x:Label. decl_type(dec;x) Type
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
term_primed_vars Def term_primed_vars(t) == iterate(statevar v- > nil statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t)
Thm* t:Term. term_primed_vars(t) Label List
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
filter Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l) T List
reduce Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive)
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B
map Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
mk_rel Def mk_rel(name, args) == < name,args >
Thm* name:relname(), args:Term List. mk_rel(name, args) rel()
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
st_lift Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top)
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type
mentions_trace Def mentions_trace(t) == iterate(statevar x- > false statevar x'- > false funsymbol x- > false freevar x- > false trace(P)- > true x(y)- > x y over t)
Thm* t:Term. mentions_trace(t)
term_iter Def iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a;b) over t) == term_iterate(x.v(x); x'.v'(x'); op.opr(op); f.fvar(f); tr.trace(tr); a,b. comb(a;b); t)
Thm* A:Type, v,v',opr,fvar,trace:(LabelA), comb:(AAA), t:Term. iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a,b) over t) A
term_iterate Def term_iterate(v;p;op;f;tr;a;t) == t_iterate(x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t)
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A
t_iterate Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive)
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A
bor Def p q == if p true else q fi
Thm* p,q:. (p q)
ts_case Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = >
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A
case_default Def Default = > body(value,value) == body
case_relname_other Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1])
case_relname_eq Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case Def Case(value) body == body(value,value)
clbl Def $x == ptn_atom("$x")
lbl_pair Def lbl_pr( < x, y > ) == ptn_pr( < x,y > )
Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern
Thm* x,y:Label. lbl_pr( < x, y > ) Label
typ Def t == tree_leaf(inl(t))
Thm* t:Label. t SimpleType
col_singleton Def < x > (y) == y = x T
Thm* T:Type, x:T. < x > Collection(T)
ts_var Def ts_var(x) == inl(x)
Thm* x:Label. ts_var(x) ts()
ttrace Def trace(l) == tree_leaf(ts_trace(l))
Thm* l:Label. trace(l) Term
tfvar Def l == tree_leaf(ts_fvar(l))
Thm* l:Label. l Term
topr Def f == tree_leaf(ts_op(f))
Thm* f:Label. f Term
tpvar Def l' == tree_leaf(ts_pvar(l))
Thm* l:Label. l' Term
tree_leaf Def tree_leaf(x) == inl(x)
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T)
Thm* E:Type, x:E. tree_leaf(x) Tree(E)
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_mk_dec Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1)
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
case_ts_trace Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ts_fvar Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ts_op Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ts_pvar Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
tapp Def t1 t2 == tree_node( < t1, t2 > )
Thm* t1,t2:Term. t1 t2 Term
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
top Def Top == Void given Void
Thm* Top Type
case_tree_leaf Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_node Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0))
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
ptn_atom Def ptn_atom(x) == inl(x)
Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T)
Thm* x:Atom. ptn_atom(x) Pattern
Thm* x:Atom. ptn_atom(x) Label
ptn_pr Def ptn_pr(x) == inr(inr(inr(x)))
Thm* T:Type, x:(TT). ptn_pr(x) ptn_con(T)
Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
le_int Def ij == j < i
Thm* i,j:. (ij)
node Def tree_node( < x, y > ) == tree_node( < x,y > )
Thm* E:Type, x,y:Tree(E). tree_node( < x, y > ) Tree(E)
ts_trace Def ts_trace(x) == inr(inr(inr(inr(x))))
Thm* x:Label. ts_trace(x) ts()
ts_fvar Def ts_fvar(x) == inr(inr(inr(inl(x))))
Thm* x:Label. ts_fvar(x) ts()
ts_op Def ts_op(x) == inr(inr(inl(x)))
Thm* x:Label. ts_op(x) ts()
ts_pvar Def ts_pvar(x) == inr(inl(x))
Thm* x:Label. ts_pvar(x) ts()
col_none Def < > (x) == False
Thm* T:Type. < > Collection(T)
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b
tree_node Def tree_node(x) == inr(x)
Thm* E,T:Type, x:(TT). tree_node(x) tree_con(E;T)
Thm* E:Type, x,y:Tree(E). tree_node( < x,y > ) Tree(E)
case_ts_var Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertunititvoidintnatural_numberaddsubtractint_eqless
less_thanatomtokenatom_equnioninlinr
decidesetisectisect
lambdaapplyfunctionrecursive_def_noticerecuniverseequal
membersubtypetoppropimpliesandfalsetrueallexists
!abstraction

WhoCites Definitions mb automata 4 Sections GenAutomata Doc