| Who Cites tc vcs? |
|
tc_vcs | Def tc_vcs{i}(vs;ds;da;de) == v:vc{i:l}(). v vs  tc_vc(v;ds;da;de) |
| | Thm* vs:VCs{i}, ds,da:Collection{i}(dec()), de:sig(). tc_vcs{i}(vs;ds;da;de) Prop{i'} |
|
vcs | Def VCs{i} == Collection{i'}(vc{i:l}()) |
| | Thm* VCs{i} Prop{i''} |
|
vcs_mng | Def [[vs]] rho ds da de e s tr == v:vc{i:l}(). v vs  vc_mng(v;rho;ds;da;de;e;s;tr) |
| | Thm* vs:VCs{i}, ds,da:Collection{i}(dec()), de:sig(), rho:Decl{i}, e:{sig_mng{i:l}(de; rho)}, s:{[[ds]] rho}, tr:trace_env([[da]] rho). tc_vcs{i}(vs;ds;da;de)  ( v vs.trace_consistent_vc(rho;da;tr.proj;v))  [[vs]] rho ds da de e s tr Prop{i'} |
|
vc | Def vc{i:l}() == imp{i:l}()+qimp{i:l}() |
| | Thm* vc{i:l}() Type{i'} |
|
qimp | Def qimp{i:l}() == Label Fmla Fmla |
| | Thm* qimp{i:l}() Type{i'} |
|
imp | Def imp{i:l}() == Fmla Fmla |
| | Thm* imp{i:l}() Type{i'} |
|
pred | Def Fmla == Collection(rel()) |
| | Thm* Fmla{i} Type{i'} |
|
col | Def Collection(T) == T Prop |
| | Thm* T:Type{i'}. Collection{i}(T) Type{i'} |
|
trace_consistent_vc | Def trace_consistent_vc(rho;da;R;v) == trace_consistent_pred(rho;da;R;vc_hyp(v)) & trace_consistent_pred(rho;da;R;vc_concl(v)) |
| | Thm* v:vc{i:l}(), rho:Decl, da:Collection(dec()), R:(Label Label  ). trace_consistent_vc(rho;da;R;v) Prop |
|
trace_consistent_pred | Def trace_consistent_pred(rho;da;R;p) == ( r p.trace_consistent_rel(rho;da;R;r)) |
| | Thm* p:Fmla, rho:Decl, da:Collection(dec()), R:(Label Label  ). trace_consistent_pred(rho;da;R;p) Prop |
|
col_all | Def ( x c.P(x)) == x:T. x c  P(x) |
| | Thm* T:Type, c:Collection(T), P:(T Prop). ( x c.P(x)) Prop |
|
trace_consistent_rel | Def trace_consistent_rel(rho;da;R;r) == i: ||r.args||. trace_consistent(rho;da;R;r.args[i]) |
| | Thm* rho:Decl, r:rel(), da:Collection(dec()), R:(Label Label  ). trace_consistent_rel(rho;da;R;r) Prop |
|
trace_consistent | Def trace_consistent(rho;da;R;t) == g:Label. term_mentions_guard(g;t)  subtype_rel(({a:( [[da]] rho)| (R(g,kind(a))) } List); (rho(lbl_pr( < Trace, g > )))) |
| | Thm* rho:Decl, t:Term, da:Collection(dec()), R:(Label Label  ). trace_consistent(rho;da;R;t) Prop |
|
decls_mng | Def [[ds]] rho == [[d]] rho for d {d:dec()| d ds } |
| | Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl |
|
tc_vc | Def tc_vc(v;ds;da;de) == Case(v) Case vc_imp(hc) = > tc_pred(hc.hyp;ds; < > ;de) & tc_pred(hc.concl;ds; < > ;de) Case vc_qimp(qhc) = > tc_pred(qhc.hyp;ds;dec_lookup(da;qhc.lbl);de) & tc_pred(qhc.concl;ds;dec_lookup(da;qhc.lbl);de) Default = > False |
| | Thm* v:vc{i:l}(), ds,da:Collection(dec()), de:sig(). tc_vc(v;ds;da;de) Prop |
|
vc_mng | Def vc_mng(v;rho;ds;da;de;e;s;tr) == Case(v) Case vc_imp(hc) = > [[hc.hyp]] rho ds < > de e s mk_trace_env(nil, tr.proj)  [[hc.concl]] rho ds < > de e s mk_trace_env(nil, tr.proj) Case vc_qimp(qhc) = > v:[[dec_lookup(da;qhc.lbl)]] rho. [[qhc.hyp]] rho ds dec_lookup(da;qhc.lbl) de e s v tr  [[qhc.concl]] rho ds dec_lookup(da;qhc.lbl) de e s v tappend(tr; < qhc.lbl,v > ) Default = > False |
| | Thm* v:vc{i:l}(), ds,da:Collection(dec()), de:sig(), rho:Decl, e:{[[de]] rho}, s:{[[ds]] rho}, tr:trace_env([[da]] rho). tc_vc(v;ds;da;de)  trace_consistent_vc(rho;da;tr.proj;v)  vc_mng(v;rho;ds;da;de;e;s;tr) Prop |
|
tc_pred | Def tc_pred(P;ds;da;de) == r:rel(). r P  tc(r;ds;da;de) |
| | Thm* P:Fmla, ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_pred(P;ds;da;de) Prop |
|
tc | Def tc(r;ds;da;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 & Q term_types(ds;da;de;r.args[0]) & Q term_types(ds;da;de;r.args[1]) Case R = > ||de.rel(R)|| = ||r.args|| & ( i: . i < ||r.args||  (de.rel(R))[i] term_types(ds;da;de;r.args[i])) Default = > False |
| | Thm* r:rel(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc(r;ds;da;de) Prop |
|
term_types | Def term_types(ds;da;de;t)
== iterate(statevar x- > dec_lookup(ds;x)
statevar x'- > dec_lookup(ds;x)
funsymbol op- > < de.fun(op) >
freevar x- > da
trace(P)- > < lbl_pr( < Trace, P > ) >
c1(c2)- > st_app(c1;c2)
over t) |
| | Thm* ds:Collection(dec()), da:Collection(SimpleType), de:sig(), t:Term. term_types(ds;da;de;t) Collection(SimpleType) |
|
dec_lookup | Def dec_lookup(ds;x) == < d.typ | d < d ds | d.lbl = x > > |
| | Thm* ds:Collection(dec()), x:Label. dec_lookup(ds;x) Collection(SimpleType) |
|
pred_mng | Def [[p]] rho ds da de e s a tr == r:rel(). r p  [[r]] rho ds da de e s a tr |
| | Thm* p:Fmla, ds,daa:Collection(dec()), da:Collection(SimpleType), de:sig(), rho:Decl, e:{[[de]] rho}, s:{[[ds]] rho}, a:[[da]] rho, tr:trace_env([[daa]] rho). trace_consistent_pred(rho;daa;tr.proj;p)  tc_pred(p;ds;da;de)  [[p]] rho ds da de e s a tr Prop |
|
sts_mng | Def [[sts]] rho == x:{x:SimpleType| x sts }. [[x]] rho |
| | Thm* sts:Collection(SimpleType), rho:Decl. [[sts]] rho Type |
|
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
| | Thm* T:Type, c:Collection(T), Q:(T Prop). < i c | Q(i) > Collection(T) |
|
col_map | Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
| | Thm* T,T':Type, f:(T T'), c:Collection(T). < f(x) | x c > Collection(T') |
|
st_app | Def st_app(c1;c2) == ( s2 c2.( s1 c1.st_app1(s1;s2))) |
| | Thm* c1,c2:Collection(SimpleType). st_app(c1;c2) Collection(SimpleType) |
|
col_accum | Def ( x c.f(x))(y) == x:T. x c & y f(x) |
| | Thm* T,T':Type, f:(T Collection(T')), c:Collection(T). ( x c.f(x)) Collection(T') |
|
col_member | Def x c == c(x) |
| | Thm* T:Type, x:T, c:Collection(T). x c Prop |
|
dec | Def dec() == Label SimpleType |
| | Thm* dec() Type |
|
decl | Def Decl == Label Type |
| | Thm* Decl{i} Type{i'} |
|
record_pair | Def {p} == {1of(p)} {2of(p)} |
| | Thm* p:(Decl Decl). {p} Type |
|
record | Def {d} == l:Label decl_type(d;l) |
| | Thm* d:Decl. {d} Type |
|
sig | Def sig() == (Label SimpleType) (Label (SimpleType List)) |
| | Thm* sig() Type |
|
trace_env | Def trace_env(d) == (( d) List) (Label Label  ) |
| | Thm* d:Decl. trace_env(d) Type |
|
rel | Def rel() == relname() (Term List) |
| | Thm* rel() Type |
|
relname | Def relname() == SimpleType+Label |
| | Thm* relname() Type |
|
st_app1 | Def st_app1(s1;s2) == Case(s1) Case a;b = > if st_eq(a;s2) < b > else < > fi Default = > < > |
| | Thm* s1,s2:SimpleType. st_app1(s1;s2) Collection(SimpleType) |
|
st | Def SimpleType == Tree(Label+Unit) |
| | Thm* SimpleType Type |
|
sigma | Def ( d) == l:Label decl_type(d;l) |
| | Thm* d:Decl. ( d) Type |
|
term | Def Term == Tree(ts()) |
| | Thm* Term Type |
|
ts | Def ts() == Label+Label+Label+Label+Label |
| | Thm* ts() Type |
|
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
sig_mng | Def [[s]] rho == < op.[[s.fun(op)]] rho, R.[[s.rel(R)]] rho > |
| | Thm* s:sig(), rho:Decl{i}. sig_mng{i:l}(s; rho) Decl{i} Decl{i'} |
|
tappend | Def tappend(tr;a) == mk_trace_env(tr.trace @ [a], tr.proj) |
| | Thm* d:Decl, tr:trace_env(d), a:( d). tappend(tr;a) trace_env(d) |
|
rel_mng | Def [[r]] rho ds da de e s a tr == list_accum(x,t.x([[t]] 1of(e) s a tr);[[r.name]] rho 2of(e) ;r.args) |
| | Thm* r:rel(), ds,da:Collection(dec()), de:sig(), rho:Decl, st1:Collection(SimpleType), e:{[[de]] rho}, s:{[[ds]] rho}, a:[[st1]] rho, tr:trace_env([[da]] rho). trace_consistent_rel(rho;da;tr.proj;r)  tc(r;ds;st1;de)  [[r]] rho ds st1 de e s a tr Prop |
| | Thm* rho:Decl, ds,daa:Collection(dec()), da1:Collection(SimpleType), de:sig(), s:{[[ds]] rho}, e:{[[de]] rho}, tr:trace_env([[daa]] rho), r:rel(). closed_rel(r)  tc(r;ds;da1;de)  trace_consistent_rel(rho;daa;tr.proj;r)  [[r]] rho ds da1 de e s tr Prop |
|
term_mng | Def [[t]] e s a tr
== iterate(statevar x- > s.x
statevar x'- > s.x
funsymbol f- > e.f
freevar x- > a
trace(P)- > tr.P
x(y)- > x(y)
over t) |
|
tproj | Def tre.P == tre.trace | tre.proj(P) |
| | Thm* d:Decl, tre:trace_env(d), P:Label. tre.P ( d) List |
|
trace_env_proj | Def t.proj == 2of(t) |
| | Thm* d:Decl, t:trace_env(d). t.proj Label Label   |
|
dec_mng | Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho |
| | Thm* rho:Decl, d:dec(). [[d]] rho Decl |
|
dall | Def D(i) for i I(x) == i:I. D(i)(x) |
| | Thm* I:Type, D:(I Decl). D(i) for i I Decl |
|
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x) ground_ptn(y) Default = > true (recursive) |
| | Thm* p:Pattern. ground_ptn(p)  |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
ptn | Def Pattern == rec(T.ptn_con(T)) |
| | Thm* Pattern Type |
|
decl_type | Def decl_type(d;x) == d(x) |
| | Thm* dec:Decl, x:Label. decl_type(dec;x) Type |
|
sig_rel | Def t.rel == 2of(t) |
| | Thm* t:sig(). t.rel Label (SimpleType List) |
|
vc_concl | Def vc_concl(v) == Case(v) Case vc_imp(x) = > x.concl Case vc_qimp(x) = > x.concl Default = > False |
| | Thm* v:vc{i:l}(). vc_concl(v) Fmla |
|
vc_hyp | Def vc_hyp(v) == Case(v) Case vc_imp(x) = > x.hyp Case vc_qimp(x) = > x.hyp Default = > False |
| | Thm* v:vc{i:l}(). vc_hyp(v) Fmla |
|
qimp_concl | Def t.concl == 2of(2of(t)) |
| | Thm* t:qimp{i:l}(). t.concl Fmla |
|
qimp_hyp | Def t.hyp == 1of(2of(t)) |
| | Thm* t:qimp{i:l}(). t.hyp Fmla |
|
imp_concl | Def t.concl == 2of(t) |
| | Thm* t:imp{i:l}(). t.concl Fmla |
|
dec_typ | Def t.typ == 2of(t) |
| | Thm* t:dec(). t.typ SimpleType |
|
rel_args | Def t.args == 2of(t) |
| | Thm* t:rel(). t.args Term List |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
sig_fun | Def t.fun == 1of(t) |
| | Thm* t:sig(). t.fun Label SimpleType |
|
qimp_lbl | Def t.lbl == 1of(t) |
| | Thm* t:qimp{i:l}(). t.lbl Label |
|
imp_hyp | Def t.hyp == 1of(t) |
| | Thm* t:imp{i:l}(). t.hyp Fmla |
|
dec_lbl | Def t.lbl == 1of(t) |
| | Thm* t:dec(). t.lbl Label |
|
trace_env_trace | Def t.trace == 1of(t) |
| | Thm* d:Decl, t:trace_env(d). t.trace ( d) List |
|
rel_name | Def t.name == 1of(t) |
| | Thm* t:rel(). t.name relname() |
|
trace_projection | Def tr | P == filter( x.P(kind(x));tr) |
| | Thm* d:Decl, tr:( d) List, P:(Label  ). tr | P ( d) List |
|
kind | Def kind(a) == 1of(a) |
| | Thm* d:Decl, a:( d). kind(a) Label |
| | Thm* M:sm{i:l}(), a:M.action. kind(a) Label & kind(a) Pattern |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
st_list_mng | Def [[l]] rho == reduce( s,m. [[s]] rho m;Prop;l) |
| | Thm* l:SimpleType List, rho:Decl{i}. [[l]] rho{i} Type{i'} |
|
relname_mng | Def [[rn]] rho e == Case(rn) Case eq(Q) = > x,y. x = y [[Q]] rho Case R = > e.R Default = > True |
|
st_mng | Def [[s]] rho == t_iterate(st_lift(rho); x,y. x y;s) |
| | Thm* rho:Decl, s:SimpleType. [[s]] rho Type |
|
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
| | Thm* E:Type. Tree(E) Type |
|
dbase | Def x:y(a) == if a = x y else Top fi |
| | Thm* x:Label, y:Type. x:y Decl |
|
case_mk_dec | Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1) |
|
term_mentions_guard | Def term_mentions_guard(g;t) == term_iterate( x.false ; x.false ; x.false ; x.false ; x.x = g; x,y. x  y;t) |
| | Thm* t:Term, g:Label. term_mentions_guard(g;t)  |
|
term_iter | Def iterate(statevar x- > v(x)
statevar x''- > v'(x')
funsymbol op- > opr(op)
freevar f- > fvar(f)
trace(tr)- > trace(tr)
a(b)- > comb(a;b)
over t)
== term_iterate( x.v(x);
x'.v'(x');
op.opr(op);
f.fvar(f);
tr.trace(tr);
a,b. comb(a;b);
t) |
| | Thm* A:Type, v,v',opr,fvar,trace:(Label A), comb:(A A A), t:Term.
iterate(statevar x- > v(x)
statevar x''- > v'(x')
funsymbol op- > opr(op)
freevar f- > fvar(f)
trace(tr)- > trace(tr)
a(b)- > comb(a,b)
over t)
A |
|
term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate( x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t) |
| | Thm* A:Type, v,op,f,p,tr:(Label A), a:(A A A), t:Term. term_iterate(v;p;op;f;tr;a;t) A |
|
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
| | Thm* E,A:Type, l:(E A), n:(A A A), t:Tree(E). t_iterate(l;n;t) A |
|
st_eq | Def st_eq(s1;s2) == Case(s1) Case a;b = > Case(s2) Case a';b' = > st_eq(a;a') st_eq(b;b') Default = > false Case tree_leaf(x) = > Case(s2) Case a';b' = > false Case tree_leaf(y) = > InjCase(x; x'. InjCase(y; y'. x' = y'; b. false ); a. InjCase(y; y'. false ; b. true )) Default = > false Default = > false (recursive) |
| | Thm* s1,s2:SimpleType. st_eq(s1;s2)  |
|
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x= y Atom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x= y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x= y Atom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = u y = v Default = > false Default = > false (recursive) |
| | Thm* l1,l2:Pattern. l1 = l2  |
|
ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = >  |
| | Thm* A:Type, v,op,f,p,t:(Label A), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A |
|
case | Def Case(value) body == body(value,value) |
|
case_default | Def Default = > body(value,value) == body |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
ptn_con | Def ptn_con(T) == Atom+ +Atom+(T T) |
| | Thm* T:Type. ptn_con(T) Type |
|
filter | Def filter(P;l) == reduce( a,v. if P(a) [a / v] else v fi;nil;l) |
| | Thm* T:Type, P:(T  ), l:T List. filter(P;l) T List |
|
reduce | Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive) |
| | Thm* A,B:Type, f:(A B B), k:B, as:A List. reduce(f;k;as) B |
|
st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) |
| | Thm* rho:(Label Type). st_lift(rho) (Label+Unit) Type |
|
case_vc_qimp | Def Case vc_qimp(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) |
|
col_none | Def < > (x) == False |
| | Thm* T:Type. < > Collection(T) |
|
case_vc_imp | Def Case vc_imp(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
mk_trace_env | Def mk_trace_env(trace, proj) == < trace,proj > |
| | Thm* d:Decl, trace:( d) List, proj:(Label Label  ). mk_trace_env(trace, proj) trace_env(d) |
|
tree_con | Def tree_con(E;T) == E+(T T) |
| | Thm* E,T:Type. tree_con(E;T) Type |
|
top | Def Top == Void given Void |
| | Thm* Top Type |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n < ||l||  l[n] A |
|
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_relname_other | Def Case x = > body(x) cont(x1,z) == ( x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) |
|
case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
| | Thm* A:Type, l:A List . hd(l) A |
|
nth_tl | Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
|
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| | Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
eq_atom | Def x= y Atom == if x=y Atom true ; false fi |
| | Thm* x,y:Atom. x= y Atom  |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
case_relname_eq | Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
clbl | Def $x == ptn_atom("$x") |
|
lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) |
| | Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern |
| | Thm* x,y:Label. lbl_pr( < x, y > ) Label |
|
lelt | Def i j < k == i j & j < k |
|
list_accum | Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive) |
|
typ | Def t == tree_leaf(inl(t)) |
| | Thm* t:Label. t SimpleType |
|
col_singleton | Def < x > (y) == y = x T |
| | Thm* T:Type, x:T. < x > Collection(T) |
|
le | Def A B == B < A |
| | Thm* i,j: . (i j) Prop |
|
le_int | Def i j ==  j < i |
| | Thm* i,j: . (i j)  |
|
ptn_atom | Def ptn_atom(x) == inl(x) |
| | Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T) |
| | Thm* x:Atom. ptn_atom(x) Pattern |
| | Thm* x:Atom. ptn_atom(x) Label |
|
ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) |
| | Thm* T:Type, x:(T T). ptn_pr(x) ptn_con(T) |
| | Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern |
|
bor | Def p  q == if p true else q fi |
| | Thm* p,q: . (p  q)  |
|
r_select | Def r.l == r(l) |
| | Thm* d:Decl, r:{d}, l:Label. r.l d(l) |
|
tree_leaf | Def tree_leaf(x) == inl(x) |
| | Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T) |
| | Thm* E:Type, x:E. tree_leaf(x) Tree(E) |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
lt_int | Def i < j == if i < j true ; false fi |
| | Thm* i,j: . (i < j)  |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |