| Who Cites closed pred? | |
| closed_pred | Def closed_pred(p) == |
| Thm* | |
| tc_ioa | Def tc_ioa(A;de) == tc_pred(A.init;A.ds; < > ;de) & ( |
| Thm* | |
| tc_vc | Def tc_vc(v;ds;da;de) == Case(v) Case vc_imp(hc) = > tc_pred(hc.hyp;ds; < > ;de) & tc_pred(hc.concl;ds; < > ;de) Case vc_qimp(qhc) = > tc_pred(qhc.hyp;ds;dec_lookup(da;qhc.lbl);de) & tc_pred(qhc.concl;ds;dec_lookup(da;qhc.lbl);de) Default = > False |
| Thm* | |
| tc_pred | Def tc_pred(P;ds;da;de) == |
| Thm* | |
| tc_eff | Def tc_eff(ef;ds;de) == tc_smt(ef.smt;ds; < ef.typ > ;de) |
| Thm* | |
| tc | Def tc(r;ds;da;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 |
| Thm* | |
| tc_smt | Def tc_smt(s;ds;da;de) == mk_dec(s.lbl, s.typ) |
| Thm* | |
| term_types | Def term_types(ds;da;de;t) == iterate(statevar x- > dec_lookup(ds;x) statevar x'- > dec_lookup(ds;x) funsymbol op- > < de.fun(op) > freevar x- > da trace(P)- > < lbl_pr( < Trace, P > ) > c1(c2)- > st_app(c1;c2) over t) |
| Thm* | |
| st_app | Def st_app(c1;c2) == ( |
| Thm* | |
| st_app1 | Def st_app1(s1;s2) == Case(s1) Case a;b = > if st_eq(a;s2) |
| Thm* | |
| col_none | Def < > (x) == False |
| Thm* | |
| covers_pred | Def covers_pred(A;p) == |
| Thm* | |
| ioa | Def ioa{i:l}() == Collection(dec()) |
| Thm* ioa{i:l}() | |
| ioa_da | Def t.da == 1of(2of(t)) |
| Thm* | |
| ioa_ds | Def t.ds == 1of(t) |
| Thm* | |
| ioa_init | Def t.init == 1of(2of(2of(t))) |
| Thm* | |
| Thm* | |
| mk_imp | Def mk_imp(hyp, concl) == < hyp,concl > |
| Thm* | |
| vc | Def vc{i:l}() == imp{i:l}()+qimp{i:l}() |
| Thm* vc{i:l}() | |
| qimp | Def qimp{i:l}() == Label |
| Thm* qimp{i:l}() | |
| imp | Def imp{i:l}() == Fmla |
| Thm* imp{i:l}() | |
| pred | Def Fmla == Collection(rel()) |
| Thm* Fmla{i} | |
| sig | Def sig() == (Label |
| Thm* sig() | |
| single_valued_decls | Def single_valued_decls(c) == |
| Thm* | |
| vc_imp | Def vc_imp(x) == inl(x) |
| Thm* | |
| closed_rel | Def closed_rel(r) == rel_free_vars(r) = nil |
| Thm* | |
| covers_var | Def covers_var(A;x) == |
| Thm* | |
| pred_mentions | Def pred_mentions(p;x) == |
| Thm* | |
| dec_lookup | Def dec_lookup(ds;x) == < d.typ | d |
| Thm* | |
| col_filter | Def < x |
| Thm* | |
| col_map | Def < f(x) | x |
| Thm* | |
| col_accum | Def ( |
| Thm* | |
| col_member | Def x |
| Thm* | |
| pre | Def pre() == Label |
| Thm* pre() | |
| rel | Def rel() == relname() |
| Thm* rel() | |
| frame | Def frame() == Label |
| Thm* frame() | |
| eff | Def eff() == Label |
| Thm* eff() | |
| dec | Def dec() == Label |
| Thm* dec() | |
| relname | Def relname() == SimpleType+Label |
| Thm* relname() | |
| smt | Def smt() == Label |
| Thm* smt() | |
| st | Def SimpleType == Tree(Label+Unit) |
| Thm* SimpleType | |
| term | Def Term == Tree(ts()) |
| Thm* Term | |
| rel_mentions | Def rel_mentions(r;x) == |
| Thm* | |
| ts | Def ts() == Label+Label+Label+Label+Label |
| Thm* ts() | |
| lbl | Def Label == {p:Pattern| |
| Thm* Label | |
| col | Def Collection(T) == T |
| Thm* | |
| frame_typ | Def t.typ == 1of(2of(t)) |
| Thm* | |
| ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
| Thm* | |
| eff_typ | Def t.typ == 1of(2of(2of(t))) |
| Thm* | |
| ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
| Thm* | |
| pre_rel | Def t.rel == 2of(2of(t)) |
| Thm* | |
| ioa_pre | Def t.pre == 1of(2of(2of(2of(t)))) |
| Thm* | |
| qimp_concl | Def t.concl == 2of(2of(t)) |
| Thm* | |
| qimp_hyp | Def t.hyp == 1of(2of(t)) |
| Thm* | |
| imp_concl | Def t.concl == 2of(t) |
| Thm* | |
| rel_free_vars | Def rel_free_vars(r) == reduce( |
| Thm* | |
| eff_smt | Def t.smt == 2of(2of(2of(t))) |
| Thm* | |
| frame_acts | Def t.acts == 2of(2of(t)) |
| Thm* | |
| dec_typ | Def t.typ == 2of(t) |
| Thm* | |
| rel_args | Def t.args == 2of(t) |
| Thm* | |
| sig_rel | Def t.rel == 2of(t) |
| Thm* | |
| smt_term | Def t.term == 1of(2of(t)) |
| Thm* | |
| smt_typ | Def t.typ == 2of(2of(t)) |
| Thm* | |
| pi2 | Def 2of(t) == t.2 |
| Thm* | |
| frame_var | Def t.var == 1of(t) |
| Thm* | |
| eff_kind | Def t.kind == 1of(t) |
| Thm* | |
| pre_kind | Def t.kind == 1of(t) |
| Thm* | |
| qimp_lbl | Def t.lbl == 1of(t) |
| Thm* | |
| imp_hyp | Def t.hyp == 1of(t) |
| Thm* | |
| smt_lbl | Def t.lbl == 1of(t) |
| Thm* | |
| dec_lbl | Def t.lbl == 1of(t) |
| Thm* | |
| rel_name | Def t.name == 1of(t) |
| Thm* | |
| sig_fun | Def t.fun == 1of(t) |
| Thm* | |
| pi1 | Def 1of(t) == t.1 |
| Thm* | |
| mk_dec | Def mk_dec(lbl, typ) == < lbl,typ > |
| Thm* | |
| st_eq | Def st_eq(s1;s2) == Case(s1) Case a;b = > Case(s2) Case a';b' = > st_eq(a;a') |
| Thm* | |
| eq_lbl | Def l1 = |
| Thm* | |
| ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false |
| Thm* | |
| term_free_vars | Def term_free_vars(t) == term_iterate( |
| Thm* | |
| term_vars | Def term_vars(t) == iterate(statevar v- > [v] statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t) |
| Thm* | |
| term_iter | Def iterate(statevar x- > v(x)
statevar x''- > v'(x')
funsymbol op- > opr(op)
freevar f- > fvar(f)
trace(tr)- > trace(tr)
a(b)- > comb(a;b)
over t)
== term_iterate( |
| Thm* | |
| term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate( |
| Thm* | |
| ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > |
| Thm* | |
| t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
| Thm* | |
| case_default | Def Default = > body(value,value) == body |
| case_vc_qimp | Def Case vc_qimp(x) = > body(x) cont(x1,z) == ( |
| case_vc_imp | Def Case vc_imp(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| case | Def Case(value) body == body(value,value) |
| assert | Def |
| Thm* | |
| l_member | Def (x |
| Thm* | |
| ptn | Def Pattern == rec(T.ptn_con(T)) |
| Thm* Pattern | |
| tree | Def Tree(E) == rec(T.tree_con(E;T)) |
| Thm* | |
| col_singleton | Def < x > (y) == y = x |
| Thm* | |
| select | Def l[i] == hd(nth_tl(i;l)) |
| Thm* | |
| length | Def ||as|| == Case of as; nil |
| Thm* | |
| Thm* ||nil|| | |
| nat | Def |
| Thm* | |
| case_relname_other | Def Case x = > body(x) cont(x1,z) == ( |
| case_relname_eq | Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == ( |
| case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == ( |
| case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == ( |
| case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == ( |
| case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == ( |
| case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == ( |
| hd | Def hd(l) == Case of l; nil |
| Thm* | |
| Thm* | |
| nth_tl | Def nth_tl(n;as) == if n |
| Thm* | |
| tl | Def tl(l) == Case of l; nil |
| Thm* | |
| case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
| append | Def as @ bs == Case of as; nil |
| Thm* | |
| reduce | Def reduce(f;k;as) == Case of as; nil |
| Thm* | |
| band | Def p |
| Thm* | |
| case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
| eq_atom | Def x= |
| Thm* | |
| eq_int | Def i= |
| Thm* | |
| case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| ptn_con | Def ptn_con(T) == Atom+ |
| Thm* | |
| tree_con | Def tree_con(E;T) == E+(T |
| Thm* | |
| clbl | Def $x == ptn_atom("$x") |
| lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) |
| Thm* | |
| Thm* | |
| typ | Def t == tree_leaf(inl(t)) |
| Thm* | |
| le | Def A |
| Thm* | |
| case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
| le_int | Def i |
| Thm* | |
| ptn_atom | Def ptn_atom(x) == inl(x) |
| Thm* | |
| Thm* | |
| Thm* | |
| ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) |
| Thm* | |
| Thm* | |
| tree_leaf | Def tree_leaf(x) == inl(x) |
| Thm* | |
| Thm* | |
| not | Def |
| Thm* | |
| lt_int | Def i < |
| Thm* | |
| bnot | Def |
| Thm* | |
| case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
| case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
About: