mb event system 1 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def P  Q == (P  Q) & (P  Q)

is mentioned by

Thm* l:T List, x:T. (x  l (l1,l2:T List. l = (l1 @ [x] @ l2))[l_member_decomp]
Thm* ll:(T List) List, x:T. (x  concat(ll))  (l:T List. (l  ll) & (x  l))[member-concat]
Thm* f:(TT'), L:T List, x',y':T'.
Thm* x' before y'  map(f;L (x,y:Tx before y  L & f(x) = x' & f(y) = y')
[before-map]
Thm* n:x,y:nx before y  upto(n x<y[before-upto]
Thm* n,i:. (i  upto(n))  i<n[member_upto]
Thm* f:(AB), l:A List. map(f;l) = nil  l = nil[map_is_nil]
Thm* P:(TProp). 
Thm* (x:T. Dec(P(x)))
Thm* 
Thm* (finite-type({x:TP(x) })  (L:T List. x:TP(x (x  L)))
[finite-decidable-set]
Thm* P:(TProp). 
Thm* (x:T. SqStable(P(x)))
Thm* 
Thm* (finite-type({x:TP(x) })  (L:T List. x:TP(x (x  L)))
[finite-set-type]
Thm* finite-type(T (L:T List. x:T. (x  L))[finite-type-iff-list]
Thm* T:Type{i}, x:TL:T List, P:(TTProp{i'}).
Thm* (x,y[x / L].P(x,y))  (x,yL.P(x,y)) & (yL.P(x,y))
[pairwise-cons]

In prior sections: core fun 1 well fnd int 1 bool 1 int 2 list 1 mb basic rel 1 mb nat mb list 1 num thy 1 mb list 2

Try larger context: EventSystems IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

mb event system 1 Sections EventSystems Doc