| Some definitions of interest. |
|
d-es | Def es is an event system of D
Def == w:World, p:FairFifo. PossibleWorld(D;w) & es = ES(w) ES |
|
d-sub | Def D1 D2 == i:Id. M(i) M(i) |
|
dsys | Def Dsys == Id MsgA |
| | Thm* Dsys Type{i'} |
|
event_system | Def ES
Def == E:Type
Def == EqDecider(E) (T:Id Id Type
Def == EqDecider(E) ( V:Id Id Type
Def == EqDecider(E) ( M:IdLnk Id Type
Def == EqDecider(E) ( Top (loc:E Id
Def == EqDecider(E) ( Top ( kind:E Knd
Def == EqDecider(E) ( Top ( val:(e:E eventtype(kind;loc;V;M;e))
Def == EqDecider(E) ( Top ( when:(x:Id e:E T(loc(e),x))
Def == EqDecider(E) ( Top ( after:(x:Id e:E T(loc(e),x))
Def == EqDecider(E) ( Top ( sends:(l:IdLnk E (Msg_sub(l; M) List))
Def == EqDecider(E) ( Top ( sender:{e:E| isrcv(kind(e)) } E
Def == EqDecider(E) ( Top ( index:(e:{e:E| isrcv(kind(e)) }  ||sends
Def == EqDecider(E) ( Top ( index:(e:{e:E| isrcv(kind(e)) }  ||(lnk(kind(e))
Def == EqDecider(E) ( Top ( index:(e:{e:E| isrcv(kind(e)) }  ||,sender(e))||)
Def == EqDecider(E) ( Top ( first:E 
Def == EqDecider(E) ( Top ( pred:{e':E|  (first(e')) } E
Def == EqDecider(E) ( Top ( causl:E E Prop
Def == EqDecider(E) ( Top ( ESAxioms{i:l}
Def == EqDecider(E) ( Top ( ESAxioms(E;
Def == EqDecider(E) ( Top ( ESAxioms(T;
Def == EqDecider(E) ( Top ( ESAxioms(M;
Def == EqDecider(E) ( Top ( ESAxioms(loc;
Def == EqDecider(E) ( Top ( ESAxioms(kind;
Def == EqDecider(E) ( Top ( ESAxioms(val;
Def == EqDecider(E) ( Top ( ESAxioms(when;
Def == EqDecider(E) ( Top ( ESAxioms(after;
Def == EqDecider(E) ( Top ( ESAxioms(sends;
Def == EqDecider(E) ( Top ( ESAxioms(sender;
Def == EqDecider(E) ( Top ( ESAxioms(index;
Def == EqDecider(E) ( Top ( ESAxioms(first;
Def == EqDecider(E) ( Top ( ESAxioms(pred;
Def == EqDecider(E) ( Top ( ESAxioms(causl)
Def == EqDecider(E) ( Top ( Top)) |
| | Thm* ES Type{i'} |
|
possible-world | Def PossibleWorld(D;w)
Def == FairFifo
Def == & ( i,x:Id. vartype(i;x) r M(i).ds(x))
Def == & & ( i:Id, a:Action(i).
Def == & & ( isnull(a)  (valtype(i;a) r M(i).da(kind(a))))
Def == & & ( l:IdLnk, tg:Id. (w.M(l,tg)) r M(source(l)).da(rcv(l; tg)))
Def == & & ( i,x:Id. M(i).init(x,s(i;0).x))
Def == & & ( i:Id, t: .
Def == & & ( isnull(a(i;t))
Def == & & (
Def == & & (( islocal(kind(a(i;t)))
Def == & & ((
Def == & & ((M(i).pre(act(kind(a(i;t))), x.s(i;t).x,val(a(i;t))))
Def == & & (& ( x:Id.
Def == & & (& (M(i).ef(kind(a(i;t)),x, x.s(i;t).x,val(a(i;t)),s(i;t+1).x))
Def == & & (& ( l:IdLnk.
Def == & & (& (M(i).send(kind(a(i;t));l; x.
Def == & & (& (s(i;t).x;val(a(i;t));withlnk(l;m(i;t));i))
Def == & & (& ( x:Id.
Def == & & (& ( M(i).frame(kind(a(i;t)) affects x)
Def == & & (& (
Def == & & (& (s(i;t).x = s(i;t+1).x M(i).ds(x))
Def == & & (& ( l:IdLnk, tg:Id.
Def == & & (& ( M(i).sframe(kind(a(i;t)) sends <l,tg>)
Def == & & (& (
Def == & & (& (w-tagged(tg; onlnk(l;m(i;t))) = nil Msg List))
Def == & & ( i,a:Id, t: .
Def == & & ( t': .
Def == & & (t t'
Def == & & (&  isnull(a(i;t')) & kind(a(i;t')) = locl(a)
Def == & & (& a declared in M(i)
Def == & & (& unsolvable M(i).pre(a, x.s(i;t').x)) |
|
fair-fifo | Def FairFifo
Def == ( i:Id, t: , l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil Msg List)
Def == & ( i:Id, t: .
Def == & ( isnull(a(i;t))
Def == & (
Def == & (( x:Id. s(i;t+1).x = s(i;t).x vartype(i;x))
Def == & (& m(i;t) = nil Msg List)
Def == & ( i:Id, t: , l:IdLnk.
Def == & ( isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)|| 1 & hd(queue(l;t)) = msg(a(i;t)) Msg)
Def == & ( l:IdLnk, t: .
Def == & ( t': .
Def == & (t t' & isrcv(l;a(destination(l);t')) queue(l;t') = nil Msg List) |
|
w-es | Def ES(the_w;p)
Def == <E
Def == ,product-deq(Id; ;IdDeq;NatDeq)
Def == ,( i,x. vartype(i;x))
Def == ,( i,a. V(i;locl(a)))
Def == ,the_w.M
Def == ,
Def == ,( e.loc(e))
Def == ,( e.kind(e))
Def == ,( e.val(e))
Def == ,( x,e. (x when e))
Def == ,( x,e. (x after e))
Def == ,( l,e. sends(l;e))
Def == ,( e.sender(e))
Def == ,( e.index(e))
Def == ,( e.first(e))
Def == ,( e.pred(e))
Def == ,( e,e'. e <c e')
Def == ,world_DASH_event_DASH_system{1:l, i:l}(the_w,p)
Def == , > |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |