| Some definitions of interest. |
|
d-realizes2 | Def D realizes2 es.P(es) == w:World, p:FairFifo. PossibleWorld(D;w)  P(ES(w)) |
|
ma-da | Def M.da(a) == 1of(2of(M))(a)?Top |
|
Kind-deq | Def KindDeq == union-deq(IdLnk Id;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq) |
|
w-action | Def Action(i) == action(w-action-dec(w.TA;w.M;i)) |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
Knd | Def Knd == (IdLnk Id)+Id |
| | Thm* Knd Type |
|
fair-fifo | Def FairFifo
Def == ( i:Id, t: , l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil Msg List)
Def == & ( i:Id, t: .
Def == & ( isnull(a(i;t))
Def == & (
Def == & (( x:Id. s(i;t+1).x = s(i;t).x vartype(i;x))
Def == & (& m(i;t) = nil Msg List)
Def == & ( i:Id, t: , l:IdLnk.
Def == & ( isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)|| 1 & hd(queue(l;t)) = msg(a(i;t)) Msg)
Def == & ( l:IdLnk, t: .
Def == & ( t': .
Def == & (t t' & isrcv(l;a(destination(l);t')) queue(l;t') = nil Msg List) |
|
w-Msg | Def Msg == Msg(w.M) |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
w-onlnk | Def onlnk(l;mss) == filter( ms.mlnk(ms) = l;mss) |
|
w-withlnk | Def withlnk(l;mss) == mapfilter( ms.2of(ms); ms.mlnk(ms) = l;mss) |
|
idlnk-deq | Def IdLnkDeq == product-deq(Id;Id ;IdDeq;product-deq(Id; ;IdDeq;NatDeq)) |
|
ma-state | Def State(ds) == x:Id ds(x)?Top |
|
w-E | Def E == {p:(Id )|  isnull(a(1of(p);2of(p))) } |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
w-valtype | Def valtype(i;a) == kindcase(kind(a);a.w.TA(i,a);l,tg.w.M(l,tg)) |
|
actof | Def act(k) == outr(k) |
| | Thm* k:Knd. islocal(k)  act(k) Id |
|
d-single-pre-init | Def @i (with ds: ds init: init action a:T precondition a(v) is P s v)(j)
Def == if eqof(IdDeq)(j,i)
Def == if (with ds: ds
Def == if (init: init
Def == if action a:T
Def == if aprecondition a(v) is
Def == if aP)
Def == else fi |
|
deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | Thm* T:Type. EqDecider(T) Type |
|
w-tagged | Def w-tagged(tg; mss) == filter( ms.mtag(ms) = tg;mss) |
|
eq_id | Def a = b == eqof(IdDeq)(a,b) |
| | Thm* a,b:Id. a = b  |
|
fpf-val | Def z != f(x) ==> P(a;z) == x dom(f)  P(x;f(x)) |
|
id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |
|
product-deq | Def product-deq(A;B;a;b) == <proddeq(a;b),prod-deq(A;B;a;b)> |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
concat | Def concat(ll) == reduce( l,l'. l @ l';nil;ll) |
| | Thm* T:Type, ll:(T List) List. concat(ll) T List |
|
fpf-cap | Def f(x)?z == if x dom(f) f(x) else z fi |
|
fpf-dom | Def x dom(f) == deq-member(eq;x;1of(f)) |
|
deq-member | Def deq-member(eq;x;L) == reduce( a,b. eqof(eq)(a,x)  b;false ;L) |
|
eqof | Def eqof(d) == 1of(d) |
| | Thm* T:Type, d:EqDecider(T). eqof(d) T T   |
|
es-E | Def E == 1of(es) |
|
es-loc | Def loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e) |
|
fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
islocal | Def islocal(k) ==  isl(k) |
| | Thm* k:Knd. islocal(k)  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
ma-single-pre-init | Def (with ds: ds
Def (init: init
Def action a:T
Def aprecondition a(v) is
Def aP)
Def == mk-ma(ds; locl(a) : T; init; a : P; ; ; ; ) |
|
locl | Def locl(a) == inr(a) |
| | Thm* a:Id. locl(a) Knd |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |
|
ma-empty | Def == mk-ma(; ; ; ; ; ; ; ) |
|
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')]
Def (recursive) |
| | Thm* A,B:Type, f:(A B), l:A List. map(f;l) B List |
| | Thm* A,B:Type, f:(A B), l:A List . map(f;l) B List |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
w-M | Def w.M == 1of(2of(2of(w))) |
|
w-a | Def a(i;t) == 1of(2of(2of(2of(2of(w)))))(i,t) |
|
w-kind | Def kind(a) == 1of(outr(a)) |
|
w-loc | Def loc(e) == 1of(e) |
|
w-m | Def m(i;t) == 1of(2of(2of(2of(2of(2of(w))))))(i,t) |
|
w-s | Def s(i;t).x == 1of(2of(2of(2of(w))))(i,t,x) |
|
w-vartype | Def vartype(i;x) == w.T(i,x) |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
w-val | Def val(a) == 2of(outr(a)) |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
rcv | Def rcv(l; tg) == inl(<l,tg>) |
| | Thm* l:IdLnk, tg:Id. rcv(l; tg) Knd |
|
top | Def Top == Void given Void |
| | Thm* Top Type |
|
w-isnull | Def isnull(a) == isl(a) |