By: |
![]() THEN RWO Thm* ![]() Thm* x ![]() ![]() ![]() ![]() ![]() ![]() ![]() -1 THEN Unfold `fpf-val` 0 THEN Analyze 0 THEN RWO Thm* ![]() Thm* x ![]() ![]() ![]() ![]() ![]() ![]() ![]() -1 THEN RWO Thm* ![]() Thm* f ![]() ![]() ![]() 0 THEN SplitOnConclITE THEN SplitOrHyps THEN Try Trivial THEN Try (AllHyps (Unfold `fpf-val`) THEN BackThruSomeHyp THEN Complete Auto) |
1 |
![]() ![]() 25. kx ![]() ![]() ![]() 26. ![]() ![]() 26. kl ![]() 26. ![]() ![]() 26. ( ![]() 26. ((tg ![]() ![]() 26. ( ![]() ![]() 26. (L != sframe(<2of(kl),tg>) ==> deq-member(KindDeq;1of(kl);L)) 27. ![]() ![]() ![]() ![]() 28. ![]() ![]() ![]() ![]() 29. ![]() ![]() ![]() ![]() ![]() ![]() 30. ![]() ![]() 30. kx ![]() ![]() ![]() 31. ![]() ![]() 31. kl ![]() 31. ![]() ![]() 31. ( ![]() 31. ((tg ![]() ![]() 31. ( ![]() ![]() 31. (L != s2(<2of(kl),tg>) ==> deq-member(KindDeq;1of(kl);L)) 32. kx : Knd ![]() 33. kx ![]() 34. 2of(kx) ![]() 35. 2of(kx) ![]() ![]() ![]() | 6 steps |
2 |
![]() ![]() 25. kx ![]() ![]() ![]() 26. ![]() ![]() 26. kl ![]() 26. ![]() ![]() 26. ( ![]() 26. ((tg ![]() ![]() 26. ( ![]() ![]() 26. (L != sframe(<2of(kl),tg>) ==> deq-member(KindDeq;1of(kl);L)) 27. ![]() ![]() ![]() ![]() 28. ![]() ![]() ![]() ![]() 29. ![]() ![]() ![]() ![]() ![]() ![]() 30. ![]() ![]() 30. kx ![]() ![]() ![]() 31. ![]() ![]() 31. kl ![]() 31. ![]() ![]() 31. ( ![]() 31. ((tg ![]() ![]() 31. ( ![]() ![]() 31. (L != s2(<2of(kl),tg>) ==> deq-member(KindDeq;1of(kl);L)) 32. kx : Knd ![]() 33. kx ![]() 34. 2of(kx) ![]() 35. 2of(kx) ![]() ![]() ![]() | 3 steps |
3 |
![]() ![]() 25. kx ![]() ![]() ![]() 26. ![]() ![]() 26. kl ![]() 26. ![]() ![]() 26. ( ![]() 26. ((tg ![]() ![]() 26. ( ![]() ![]() 26. (L != sframe(<2of(kl),tg>) ==> deq-member(KindDeq;1of(kl);L)) 27. ![]() ![]() ![]() ![]() 28. ![]() ![]() ![]() ![]() 29. ![]() ![]() ![]() ![]() ![]() ![]() 30. ![]() ![]() 30. kx ![]() ![]() ![]() 31. ![]() ![]() 31. kl ![]() 31. ![]() ![]() 31. ( ![]() 31. ((tg ![]() ![]() 31. ( ![]() ![]() 31. (L != s2(<2of(kl),tg>) ==> deq-member(KindDeq;1of(kl);L)) 32. kx : Knd ![]() 33. kx ![]() 34. 2of(kx) ![]() 35. ![]() ![]() ![]() ![]() | 1 step |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |