| By: |
let let let let let let let let let RepeatFor 3 (Analyze 0 THENA Complete Auto) THEN AssertBY ((eqof(IdDeq)(i,i)) ~ true (BackThru Thm* THEN ES_Reduce THEN PW_Reduce -2 THEN AllHyps ( (InstHyp [i] h THENA Complete Auto THEN Subst ((eqof(IdDeq)(i,i)) ~ true (THENL ([Trivial;Thin h THEN Reduce -1 THEN Repeat (Unfolds maops -1 THEN Reduce -1)]) |
| 1 |
4. ds : x:Id fp-> Type{i} 5. P : State(ds) 6. w : World 7. p : FairFifo 8. FairFifo 9. 9. (w.M(l,tg)) 9. (w.M(l,tg)) 9. (w.M(l,tg)) 10. (eqof(IdDeq)(i,i)) ~ true 11. 11. 11. t 11. & 11. & 11. & 11. & 12. 12. 12. 12. (islocal(kind(a(i;t))) 12. ( 12. ((eqof(IdDeq)(a,act(kind(a(i;t)))) 12. ( 12. (P(( 12. & ( 12. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);<kind(a(i;t)),x>;1of()) 12. & ( 12. & (s(i;t+1).x 12. & (= 12. & (2of()(<kind(a(i;t)),x>, 12. & ( 12. & ( 12. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);<kind(a(i;t)),l>;1of( 12. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);<kind(a(i;t)),l>;)) 12. & ( 12. & (withlnk(l;m(i;t)) 12. & (= 12. & (if source(l) = i 12. & (if concat(map( 12. & (if concat(map( 12. & (if concat(map( 12. & (if concat(map( 12. & (else nil fi 12. & ( 12. & ( 12. & ( 12. & ( 12. & ( 12. & (s(i;t).x 12. & (= 12. & (s(i;t+1).x 12. & ( 12. & ( 12. & ( 12. & ( 12. & ( 12. & ( 12. & (w-tagged(tg; onlnk(l;m(i;t))) = nil 13. 13. deq-member(IdDeq;x;1of()) 13. 13. s(i;0).x 13. = 13. 2of()(x) 13. 14. 14. 15. 15. vartype(i;x) | 161 steps |
About: