| By: |
let let let let let let let let let AssertBY ((eqof(IdDeq)(i,i)) ~ true (BackThru Thm* THEN AllHyps ( (InstHyp [i] h THENA Complete Auto THEN Subst ((eqof(IdDeq)(i,i)) ~ true (THENL ([Trivial;Thin h THEN Reduce -1 THEN Repeat (Unfolds maops -1 THEN Reduce -1)]) |
| 1 |
11. (w.M(l@0,tg)) 11. (w.M(l@0,tg)) 11. (w.M(l@0,tg)) 12. (eqof(IdDeq)(i,i)) ~ true 13. ( 13. & ( 13. & ( 13. & ({m:Msg| source(mlnk(m)) = i } 14. 14. 14. t 14. & 14. & 14. & 15. 15. 15. 15. (islocal(kind(a(i;t))) 15. ( 15. (deq-member(IdDeq;act(kind(a(i;t)));1of()) 15. ( 15. (2of()(act(kind(a(i;t))), 15. & ( 15. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);<kind(a(i;t)),x>;1of()) 15. & ( 15. & (s(i;t+1).x 15. & (= 15. & (2of()(<kind(a(i;t)),x>, 15. & ( 15. & ( 15. & ((eqof(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq))(<k,l>,<kind(a(i;t)),l@0>) 15. & (( 15. & ( 15. & (withlnk(l@0;m(i;t)) 15. & (= 15. & (if source(l@0) = i 15. & (if concat(map( 15. & (if concat(map( 15. & (if concat(map( 15. & (else nil fi 15. & ( 15. & ( 15. & ( 15. & ( 15. & (s(i;t).x 15. & (= 15. & (s(i;t+1).x 15. & ( 15. & ( 15. & ( 15. & ( 15. & ( 15. & ( 15. & (w-tagged(tg; onlnk(l@0;m(i;t))) = nil 16. 16. deq-member(IdDeq;x;1of()) 16. 16. s(i;0).x 16. = 16. 2of()(x) 16. 17. 18. 18. vartype(i;x) | 109 steps |
About: