Thm* E:EventStruct, P:TraceProperty(E), A:Type, evt:(A |E|)
, tg:(A Label), tr_u:Trace(E), tr_l:A List.
switchable(E)(P) 
No-dup-send(E)(tr_u) 
full_switch_inv(E;A;evt;tg;tr_u;tr_l)  ( m:Label. P(map(evt; < tr_l > _m)))  P(tr_u) | [switch_main_theorem] |
Thm* E:EventStruct, P:((|E| List) Prop), A:Type, evt:(A |E|), tg:(A Label)
, tr:A List.
switchable(E)(P) 
No-dup-send(E)(map(evt;tr)) 
switch_inv( < A,evt,tg > (E))(tr)  ( m:Label. P(map(evt; < tr > _m)))  P(map(evt;tr)) | [switch_theorem] |
Thm* E:TaggedEventStruct, P:TraceProperty(E).
switchable(E)(P)  ((switch_inv(E) No-dup-send(E)) fuses P) | [switch_inv_theorem2] |
Thm* E:TaggedEventStruct, P:TraceProperty(E).
MCS(E)(P) 
asyncR(E) preserves P 
delayableR(E) preserves P 
(P refines (Causal(E) No-dup-deliver(E)))  ((switch_inv(E) No-dup-send(E)) fuses P) | [switch_inv_theorem] |
Thm* E:TaggedEventStruct, P:TraceProperty(E).
MCS(E)(P) 
(P refines (Causal(E) No-dup-deliver(E))) 
(((switch_inv(E) AD-normal(E)) No-dup-send(E)) fuses P) | [switch_inv_plus_normal] |
Thm* E:EventStruct, P:((|E| List) Prop), A:Type, f:(A |E|)
, t:(A Label). switchable(E)(P)  switchable( < A,f,t > (E))(P o f) | [switchable_induced_tagged] |
Thm* E:TaggedEventStruct, tr:Trace(E).
(switch_inv(E) No-dup-send(E))(tr) 
( tr':Trace(E). switch_inv(E)(tr') & AD-normal(E)(tr') & (tr adR(E) tr')) | [switch_normal_exists] |
Thm* E:EventStruct, A:Type, f:(A |E|), P:((|E| List) Prop).
switchable(E)(P)  switchable(induced_event_str(E;A;f))(P o f) | [switchable_induced] |
Thm* E:EventStruct, tr:|E| List, ls: ||tr||.
is-send(E)(tr[ls]) 
( j: ||tr||. ls < j  is-send(E)(tr[j])) 
( i,j: ||tr||. i j  is-send(E)(tr[j])  (i (switchR(tr)^*) ls)  (j (switchR(tr)^*) ls)) | [switch_inv_rel_closure_lemma1] |
Thm* E:TaggedEventStruct, tr:|E| List, ls: ||tr||.
switch_inv(E)(tr) 
( i,j: ||tr||. (i (switchR(tr)^*) ls)  (j (switchR(tr)^*) ls)  tag(E)(tr[i]) = tag(E)(tr[j])) | [switch_inv_rel_closure] |
Thm* E:EventStruct, P:TraceProperty(E).
switchable0(E)(P)  switchable(E)(P Causal(E) No-dup-deliver(E)) | [switchable0_switchable] |
Thm* E:TaggedEventStruct, tr:|E| List.
switch_inv(E)(tr)  ( i,j: ||tr||. (i switchR(tr) j)  tag(E)(tr[i]) = tag(E)(tr[j])) | [switch_inv_rel_same_tag] |
Thm* E:EventStruct, tr:|E| List, ls,i: ||tr||.
is-send(E)(tr[ls])  (i (switchR(tr)^*) ls)  is-send(E)(tr[i]) | [switch_inv_rel_closure_send] |
Thm* E:EventStruct, P:((Label (|E| List)) Prop).
( f,g:(Label (|E| List)). ( p:Label. g(p) f(p))  P(f)  P(g)) 
( f,g:(Label (|E| List)).
( a:|E|. p:Label. g(p) = filter( b. (b =msg=(E) a);f(p)))  P(f)  P(g))

( f,g,h:(Label (|E| List)).
( p,q:Label. ( x f(p).( y g(q). (x =msg=(E) y)))) 
( p:Label. h(p) = ((f(p)) @ (g(p))))  P(f)  P(g)  P(h))

switchable0(E)(local_deliver_property(E;P)) | [local_deliver_switchable] |
Thm* E:TaggedEventStruct, x:|E| List, i: (||x||-1).
switch_inv(E)(x) 
is-send(E)(x[(i+1)]) 
is-send(E)(x[i]) loc(E)(x[i]) = loc(E)(x[(i+1)])  switch_inv(E)(swap(x;i;i+1)) | [switch_inv_swap] |
Thm* E:EventStruct, x,y:|E| List. (x asyncR(E) y)  (y asyncR(E) x) | [R_async_symmetric] |
Thm* E:EventStruct, P:TraceProperty(E).
R_permutation(E) preserves P  asyncR(E) preserves P | [permutable_implies_async] |
Thm* E:EventStruct, x,y:|E| List.
(x delayableR(E) y)  (y delayableR(E) x) | [R_delayable_symmetric] |
Thm* E:EventStruct, P:TraceProperty(E).
R_permutation(E) preserves P  delayableR(E) preserves P | [permutable_implies_delayable] |
Thm* E:TaggedEventStruct, P,I:TraceProperty(E).
MCS(E)(P)  safetyR(E) preserves I  (I refines single-tag-decomposable(E))  (I fuses P) | [M_DASH_C_DASH_S_SPACE_induction] |
Thm* E:EventStruct, a,b,c:|E|, tr:|E| List.
a somewhere delivered before b  a somewhere delivered before c c somewhere delivered before b | [delivered_before_somewhere_lemma] |
Thm* E:EventStruct, a,b:|E|, tr:|E| List.
a somewhere delivered before b

( k: ||tr||.
a delivered at time k 
( k': ||tr||. k' < k & b delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k]))) | [not_delivered_before_somewhere] |
Thm* E:EventStruct, A:Type, evt:(A |E|), tg:(A Label), m:Label
, tr1,tr2:A List. (tr1 R(tg) tr2)  < tr1 > _m = < tr2 > _m A List | [tag_sublist_preserved] |
Thm* E:TaggedEventStruct, P,I:((|E| List) Prop).
(P refines (Causal(E) No-dup-deliver(E))) 
((I No-dup-send(E) Tag-by-msg(E) Causal(E) No-dup-deliver(E)) fuses P) 
((I No-dup-send(E)) fuses P) | [no_DASH_dup_DASH_fusion] |
Thm* E:TaggedEventStruct, P,I:((|E| List) Prop).
(P refines Causal(E)) 
((I No-dup-send(E) Tag-by-msg(E)) fuses P)  ((I No-dup-send(E)) fuses P) | [tag_by_msg_fusion_lemma] |
Thm* E:TaggedEventStruct, P,I,J,K:TraceProperty(E)
, R:(Trace(E) Trace(E) Prop).
tag_splitable(E;R) 
( tr_1,tr_2:Trace(E). (tr_1 R tr_2)  (tr_2 R tr_1)) 
R preserves P 
R preserves K 
( tr:Trace(E). (I K)(tr)  ( tr':Trace(E). I(tr') & J(tr') & (tr R tr'))) 
(((I J) K) fuses P)  ((I K) fuses P) | [normal_form_fusion] |
Thm* E:EventStruct, P:TraceProperty(E), L,L1:|E| List.
memorylessR(E) preserves P  P(L)  P((L -x =msg=(E) y L1)) | [memoryless_remove_msgs] |
Thm* E:TaggedEventStruct, I,J,P:TraceProperty(E).
((I J) fuses P)  (I fuses J)  (P refines J)  (I fuses P) | [fusion_simplification] |
Thm* E:EventStruct, P:TraceProperty(E).
R_strong_safety(E) preserves P  memorylessR(E) preserves P | [strong_safety_implies_memoryless] |
Thm* E:EventStruct, P:TraceProperty(E).
R_strong_safety(E) preserves P  safetyR(E) preserves P | [strong_safety_implies_safety] |
Thm* E:TaggedEventStruct, I,P,Q:TraceProperty(E).
(I fuses P)  (I fuses Q)  (I fuses (P Q)) | [fusion_and] |
Thm* E:TaggedEventStruct, I,J,P:TraceProperty(E).
(J refines I)  (I fuses P)  (J fuses P) | [fusion_weakening] |
Thm* E:Structure, P,Q_1,Q_2:((|E| List) Prop).
(P refines Q_1)  (P refines Q_2)  (P refines (Q_1 Q_2)) | [tr_refines_and] |
Thm* E:EventStruct, L:|E| List.
L = nil  Causal(E)(L)  ( i: ||L||. is-send(E)(L[i])) | [P_causal_non_nil] |
Thm* E:TaggedEventStruct, tr:|E| List.
( m:Label. Causal(E)( < tr > _m))  No-dup-send(E)(tr)  Tag-by-msg(E)(tr) | [P_tag_by_msg_lemma] |
Thm* E:EventStruct, tr:|E| List.
No-dup-deliver(E)(tr)

( x,y:|E|.
is-send(E)(x) 
is-send(E)(y)  (y =msg=(E) x)  loc(E)(x) = loc(E)(y)  sublist(|E|;[x; y];tr)) | [P_no_dup_iff] |
Thm* E:EventStruct, tr:|E| List.
Causal(E)(tr)  ( tr':|E| List. tr' tr  ( x tr'.( y tr'.is-send(E)(y) & (y =msg=(E) x)))) | [P_causal_iff] |
Thm* msg:(A A  ), L1,L2:A List.
( a,b:A. (a L1)  (b L2)  msg(a,b))  (L1 -msg(a,b) L2) = L1 | [remove_msgs_disjoint] |
Thm* msg:(A A  ), L1,L2:A List.
( x:A. (x L1)  (x L2))  Refl(A)(msg(_1,_2))  (L1 -msg(a,b) L2) = nil | [remove_msgs_nil] |
Thm* E:EventStruct, A:Type, evt:(A |E|), tg:(A Label), tr_l:A List.
No-dup-send(E)(map(evt;tr_l))  No-dup-send( < A,evt,tg > (E))(tr_l) | [no_dup_send_induced] |
Def switch_inv(E)(tr)
== i,j,k: ||tr||.
i < j 
(is-send(E)(tr[i])) 
(is-send(E)(tr[j])) 
tag(E)(tr[i]) = tag(E)(tr[j]) 
tr[j] delivered at time k 
( k': ||tr||. k' < k & tr[i] delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k])) | [switch_inv] |
Def switch-decomposable(E)(L)
== L = nil |E| List
( Q:( ||L|| Prop).
( i: ||L||. Dec(Q(i)))
& ( i: ||L||. Q(i))
& ( i: ||L||. Q(i)  (is-send(E)(L[i])))
& ( i,j: ||L||. Q(i)  Q(j)  tag(E)(L[i]) = tag(E)(L[j]))
& ( i,j: ||L||. Q(i)  i j  C(Q)(j))) | [switch_decomposable] |
Def AD-normal(E)(tr)
== i: (||tr||-1).
( (is-send(E)(tr[i]))   (is-send(E)(tr[(i+1)]))  (tr[i] =msg=(E) tr[(i+1)]))
& (( x,y: ||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& tr[x] delivered at time i+1
& tr[y] delivered at time i)

loc(E)(tr[i]) = loc(E)(tr[(i+1)])) | [switch_normal] |
Def x somewhere delivered before y
== k: ||tr||.
x delivered at time k
& ( k': ||tr||. y delivered at time k'  loc(E)(tr[k']) = loc(E)(tr[k])  k k') | [delivered_before_somewhere] |
Def P refines Q == tr:|E| List. P(tr)  Q(tr) | [tr_refines] |
Def R_ad_normal(tr)(a,b)
== ( (is-send(E)(a))   (is-send(E)(b))  (a =msg=(E) b))
& ( (is-send(E)(a)) 
 (is-send(E)(b)) 
( x,y: ||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& (tr[x] =msg=(E) b)
& (tr[y] =msg=(E) a))

loc(E)(a) = loc(E)(b)) | [R_ad_normal] |
Def I fuses P == tr:Trace(E). ( m:Label. P( < tr > _m))  I(tr)  P(tr) | [fusion_condition] |
Def single-tag-decomposable(E)(L)
== L = nil |E| List 
( L_1,L_2:Trace(E).
L = (L_1 @ L_2) |E| List
& L_2 = nil |E| List
& ( x L_1.( y L_2. (x =msg=(E) y)))
& ( m:Label. ( x L_2.tag(E)(x) = m))) | [single_tag_decomposable] |
Def No-dup-deliver(E)(tr)
== i,j: ||tr||.
 (is-send(E)(tr[i])) 
 (is-send(E)(tr[j]))  (tr[j] =msg=(E) tr[i])  loc(E)(tr[i]) = loc(E)(tr[j])  i = j | [P_no_dup] |
Def Tag-by-msg(E)(tr)
== i,j: ||tr||. (tr[i] =msg=(E) tr[j])  tag(E)(tr[i]) = tag(E)(tr[j]) | [P_tag_by_msg] |
Def switch_inv(E; tr)
== i,j,k: ||tr||.
i < j 
(is-send(E)(tr[i])) 
(is-send(E)(tr[j])) 
tag(E)(tr[i]) = tag(E)(tr[j]) 
(tr[j] =msg=(E) tr[k]) 
 (is-send(E)(tr[k])) 
( k': ||tr||.
k' < k & loc(E)(tr[k']) = loc(E)(tr[k]) & (tr[i] =msg=(E) tr[k']) &  (is-send(E)(tr[k']))) | [switch_inv2001_03_15_DASH_PM_DASH_12_53_21] |