Thm* E:EventStruct, P:TraceProperty(E), A:Type, evt:(A |E|)
, tg:(A Label), tr_u:Trace(E), tr_l:A List.
switchable(E)(P) 
No-dup-send(E)(tr_u) 
full_switch_inv(E;A;evt;tg;tr_u;tr_l)  ( m:Label. P(map(evt; < tr_l > _m)))  P(tr_u) | [switch_main_theorem] |
Thm* E:EventStruct, P:((|E| List) Prop), A:Type, evt:(A |E|), tg:(A Label)
, tr:A List.
switchable(E)(P) 
No-dup-send(E)(map(evt;tr)) 
switch_inv( < A,evt,tg > (E))(tr)  ( m:Label. P(map(evt; < tr > _m)))  P(map(evt;tr)) | [switch_theorem] |
Thm* E:EventStruct, P:((|E| List) Prop), A:Type, f:(A |E|)
, t:(A Label). switchable(E)(P)  switchable( < A,f,t > (E))(P o f) | [switchable_induced_tagged] |
Thm* E:TaggedEventStruct, tr:|E| List, ls: ||tr||.
switch_inv(E)(tr) 
( i,j: ||tr||. (i (switchR(tr)^*) ls)  (j (switchR(tr)^*) ls)  tag(E)(tr[i]) = tag(E)(tr[j])) | [switch_inv_rel_closure] |
Thm* E:TaggedEventStruct, tr:|E| List.
switch_inv(E)(tr)  ( i,j: ||tr||. (i switchR(tr) j)  tag(E)(tr[i]) = tag(E)(tr[j])) | [switch_inv_rel_same_tag] |
Thm* E:EventStruct, P:((Label (|E| List)) Prop).
( f,g:(Label (|E| List)). ( p:Label. g(p) f(p))  P(f)  P(g)) 
( f,g:(Label (|E| List)).
( a:|E|. p:Label. g(p) = filter( b. (b =msg=(E) a);f(p)))  P(f)  P(g))

( f,g,h:(Label (|E| List)).
( p,q:Label. ( x f(p).( y g(q). (x =msg=(E) y)))) 
( p:Label. h(p) = ((f(p)) @ (g(p))))  P(f)  P(g)  P(h))

switchable0(E)(local_deliver_property(E;P)) | [local_deliver_switchable] |
Thm* E:TaggedEventStruct, x:|E| List, i: (||x||-1).
switch_inv(E)(x) 
is-send(E)(x[(i+1)]) 
is-send(E)(x[i]) loc(E)(x[i]) = loc(E)(x[(i+1)])  switch_inv(E)(swap(x;i;i+1)) | [switch_inv_swap] |
Thm* E:EventStruct, a,b:|E|, tr:|E| List.
a somewhere delivered before b

( k: ||tr||.
a delivered at time k 
( k': ||tr||. k' < k & b delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k]))) | [not_delivered_before_somewhere] |
Thm* E:EventStruct, A:Type, evt:(A |E|), tg:(A Label), m:Label
, tr1,tr2:A List. (tr1 R(tg) tr2)  < tr1 > _m = < tr2 > _m A List | [tag_sublist_preserved] |
Thm* E:TaggedEventStruct, tr:|E| List.
( m:Label. Causal(E)( < tr > _m))  No-dup-send(E)(tr)  Tag-by-msg(E)(tr) | [P_tag_by_msg_lemma] |
Thm* E:EventStruct, tr:|E| List.
No-dup-deliver(E)(tr)

( x,y:|E|.
is-send(E)(x) 
is-send(E)(y)  (y =msg=(E) x)  loc(E)(x) = loc(E)(y)  sublist(|E|;[x; y];tr)) | [P_no_dup_iff] |
Thm* E:EventStruct, A:Type, evt:(A |E|), tg:(A Label), tr_l:A List.
No-dup-send(E)(map(evt;tr_l))  No-dup-send( < A,evt,tg > (E))(tr_l) | [no_dup_send_induced] |
Def switch_inv(E)(tr)
== i,j,k: ||tr||.
i < j 
(is-send(E)(tr[i])) 
(is-send(E)(tr[j])) 
tag(E)(tr[i]) = tag(E)(tr[j]) 
tr[j] delivered at time k 
( k': ||tr||. k' < k & tr[i] delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k])) | [switch_inv] |
Def asyncR(E)
== swap adjacent[ loc(E)(x) = loc(E)(y)
&  (is-send(E)(x)) &  (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))] | [R_async] |
Def switch-decomposable(E)(L)
== L = nil |E| List
( Q:( ||L|| Prop).
( i: ||L||. Dec(Q(i)))
& ( i: ||L||. Q(i))
& ( i: ||L||. Q(i)  (is-send(E)(L[i])))
& ( i,j: ||L||. Q(i)  Q(j)  tag(E)(L[i]) = tag(E)(L[j]))
& ( i,j: ||L||. Q(i)  i j  C(Q)(j))) | [switch_decomposable] |
Def AD-normal(E)(tr)
== i: (||tr||-1).
( (is-send(E)(tr[i]))   (is-send(E)(tr[(i+1)]))  (tr[i] =msg=(E) tr[(i+1)]))
& (( x,y: ||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& tr[x] delivered at time i+1
& tr[y] delivered at time i)

loc(E)(tr[i]) = loc(E)(tr[(i+1)])) | [switch_normal] |
Def x somewhere delivered before y
== k: ||tr||.
x delivered at time k
& ( k': ||tr||. y delivered at time k'  loc(E)(tr[k']) = loc(E)(tr[k])  k k') | [delivered_before_somewhere] |
Def totalorder(E)(tr)
== p,q:Label. agree_on_common(|MS(E)|;map(msg(E);tr delivered at p);map(msg(E);tr delivered at q)) | [totalorder] |
Def R(tg) == swap adjacent[ tg(x) = tg(y) Label]^* | [tag_rel] |
Def R_ad_normal(tr)(a,b)
== ( (is-send(E)(a))   (is-send(E)(b))  (a =msg=(E) b))
& ( (is-send(E)(a)) 
 (is-send(E)(b)) 
( x,y: ||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& (tr[x] =msg=(E) b)
& (tr[y] =msg=(E) a))

loc(E)(a) = loc(E)(b)) | [R_ad_normal] |
Def I fuses P == tr:Trace(E). ( m:Label. P( < tr > _m))  I(tr)  P(tr) | [fusion_condition] |
Def single-tag-decomposable(E)(L)
== L = nil |E| List 
( L_1,L_2:Trace(E).
L = (L_1 @ L_2) |E| List
& L_2 = nil |E| List
& ( x L_1.( y L_2. (x =msg=(E) y)))
& ( m:Label. ( x L_2.tag(E)(x) = m))) | [single_tag_decomposable] |
Def No-dup-deliver(E)(tr)
== i,j: ||tr||.
 (is-send(E)(tr[i])) 
 (is-send(E)(tr[j]))  (tr[j] =msg=(E) tr[i])  loc(E)(tr[i]) = loc(E)(tr[j])  i = j | [P_no_dup] |
Def Tag-by-msg(E)(tr)
== i,j: ||tr||. (tr[i] =msg=(E) tr[j])  tag(E)(tr[i]) = tag(E)(tr[j]) | [P_tag_by_msg] |
Def switch_inv(E; tr)
== i,j,k: ||tr||.
i < j 
(is-send(E)(tr[i])) 
(is-send(E)(tr[j])) 
tag(E)(tr[i]) = tag(E)(tr[j]) 
(tr[j] =msg=(E) tr[k]) 
 (is-send(E)(tr[k])) 
( k': ||tr||.
k' < k & loc(E)(tr[k']) = loc(E)(tr[k]) & (tr[i] =msg=(E) tr[k']) &  (is-send(E)(tr[k']))) | [switch_inv2001_03_15_DASH_PM_DASH_12_53_21] |