| Who Cites R async? |
|
R_async | Def asyncR(E)
== swap adjacent[loc(E)(x) = loc(E)(y)
& (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))] |
| | Thm* E:EventStruct. asyncR(E) (|E| List)(|E| List)Prop |
|
event_is_snd |
Def is-send(E) == 1of(2of(2of(2of(2of(E))))) |
| |
Thm* E:EventStruct. is-send(E) |E| |
|
lbl |
Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
assert |
Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
swap_adjacent |
Def swap adjacent[P(x;y)](L1,L2)
== i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List |
| | Thm* A:Type, P:(AAProp). swap adjacent[P(x,y)] (A List)(A List)Prop |
|
int_seg |
Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
lelt |
Def i j < k == ij & j < k |
|
le |
Def AB == B < A |
| | Thm* i,j:. (ij) Prop |
|
not |
Def A == A False |
| | Thm* A:Prop. (A) Prop |
|
event_loc |
Def loc(E) == 1of(2of(2of(2of(E)))) |
| |
Thm* E:EventStruct. loc(E) |E|Label |
|
carrier |
Def |S| == 1of(S) |
| | Thm* S:Structure. |S| Type |
|
pi2 |
Def 2of(t) == t.2 |
| |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) |
|
pi1 |
Def 1of(t) == t.1 |
| | Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A |
|
ground_ptn |
Def ground_ptn(p)
== Case(p)
Case ptn_var(v) = >
false
Case ptn_pr( < x, y > ) = >
ground_ptn(x)ground_ptn(y)
Default = > true
(recursive) |
| |
Thm* p:Pattern. ground_ptn(p) |
|
ptn |
Def Pattern == rec(T.ptn_con(T)) |
| |
Thm* Pattern Type |
|
swap |
Def swap(L;i;j) == (L o (i, j)) |
| | Thm* T:Type, L:T List, i,j:||L||. swap(L;i;j) T List |
|
permute_list |
Def (L o f) == mklist(||L||;i.L[(f(i))]) |
| | Thm* T:Type, L:T List, f:(||L||||L||). (L o f) T List |
|
select |
Def l[i] == hd(nth_tl(i;l)) |
| |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A |
|
length |
Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| |
Thm* A:Type, l:A List. ||l|| |
| |
Thm* ||nil|| |
|
case_default |
Def Default = > body(value,value) == body |
|
band |
Def pq == if p q else false fi |
| | Thm* p,q:. (pq) |
|
case_lbl_pair |
Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z)
== InjCase(x1; _. cont(z,z); x2.
InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
case_ptn_var |
Def Case ptn_var(x) = > body(x) cont(x1,z)
== (x1.inr(x2) = >
(x1.inr(x2) = >
(x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x1]) |
|
case |
Def Case(value) body == body(value,value) |
|
ptn_con |
Def ptn_con(T) == Atom++Atom+(TT) |
| | Thm* T:Type. ptn_con(T) Type |
|
flip |
Def (i, j)(x) == if x=ij ;x=ji else x fi |
| | Thm* k:, i,j:k. (i, j) kk |
|
nth_tl |
Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List |
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h |
| |
Thm* A:Type, l:A List. ||l||1 hd(l) A |
| |
Thm* A:Type, l:A List. hd(l) A |
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t |
| |
Thm* A:Type, l:A List. tl(l) A List |
|
case_inl |
Def inl(x) = > body(x) cont(value,contvalue)
== InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
case_inr |
Def inr(x) = > body(x) cont(value,contvalue)
== InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
|
mklist |
Def mklist(n;f) == primrec(n;nil;i,l. l @ [(f(i))]) |
| | Thm* T:Type, n:, f:(nT). mklist(n;f) T List |
|
primrec |
Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive) |
| |
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T |
|
eq_int |
Def i=j == if i=j true ; false fi |
| | Thm* i,j:. (i=j) |
|
le_int |
Def ij == j < i |
| | Thm* i,j:. (ij) |
|
append |
Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| |
Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
lt_int |
Def i < j == if i < j true ; false fi |
| | Thm* i,j:. (i < j) |
|
bnot |
Def b == if b false else true fi |
| | Thm* b:. b |