WhoCites Definitions mb hybrid Sections GenAutomata Doc

Who Cites R async?
R_asyncDef asyncR(E) == swap adjacent[loc(E)(x) = loc(E)(y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))]
Thm* E:EventStruct. asyncR(E) (|E| List)(|E| List)Prop
event_is_snd Def is-send(E) == 1of(2of(2of(2of(2of(E)))))
Thm* E:EventStruct. is-send(E) |E|
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
assert Def b == if b True else False fi
Thm* b:. b Prop
swap_adjacent Def swap adjacent[P(x;y)](L1,L2) == i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List
Thm* A:Type, P:(AAProp). swap adjacent[P(x,y)] (A List)(A List)Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
lelt Def i j < k == ij & j < k
le Def AB == B < A
Thm* i,j:. (ij) Prop
not Def A == A False
Thm* A:Prop. (A) Prop
event_loc Def loc(E) == 1of(2of(2of(2of(E))))
Thm* E:EventStruct. loc(E) |E|Label
carrier Def |S| == 1of(S)
Thm* S:Structure. |S| Type
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
swap Def swap(L;i;j) == (L o (i, j))
Thm* T:Type, L:T List, i,j:||L||. swap(L;i;j) T List
permute_list Def (L o f) == mklist(||L||;i.L[(f(i))])
Thm* T:Type, L:T List, f:(||L||||L||). (L o f) T List
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case Def Case(value) body == body(value,value)
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
flip Def (i, j)(x) == if x=ij ;x=ji else x fi
Thm* k:, i,j:k. (i, j) kk
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
mklist Def mklist(n;f) == primrec(n;nil;i,l. l @ [(f(i))])
Thm* T:Type, n:, f:(nT). mklist(n;f) T List
primrec Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive)
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
le_int Def ij == j < i
Thm* i,j:. (ij)
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b

Syntax:asyncR(E) has structure: R_async(E)

About:
spreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertintnatural_numberaddsubtractint_eqlessless_thanatom
tokenuniondecidesetlambda
applyfunctionrecursive_def_noticerecuniverseequalmember
propimpliesandorfalsetrueallexists!abstraction

WhoCites Definitions mb hybrid Sections GenAutomata Doc