(31steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc

At: M DASH C DASH S SPACE induction 2 2 1 2 1 2 1 1 1

1. E: TaggedEventStruct
2. P: (|E| List)Prop
3. I: (|E| List)Prop
4. memorylessR(E) preserves P
5. x,y,z:|E| List. P(x) P(y) (xx.(yy.(x =msg=(E) y))) & z = (x @ y) P(z)
6. x,y:|E| List. P(x) y x P(y)
7. safetyR(E) preserves I
8. tr:|E| List. I(tr) tr = nil (L_1,L_2:|E| List. tr = (L_1 @ L_2) & L_2 = nil & (xL_1.(yL_2.(x =msg=(E) y))) & (m:Label. (xL_2.tag(E)(x) = m)))
9. n:
10. 0 < n
11. tr:|E| List. ||tr||n-1 (m:Label. P( < tr > _m)) I(tr) P(tr)
12. tr: |E| List
13. ||tr||n
14. tr = nil
15. m:Label. P( < tr > _m)
16. I(tr)
17. L_1: |E| List
18. L_2: |E| List
19. tr = (L_1 @ L_2)
20. L_2 = nil
21. (xL_1.(yL_2.(x =msg=(E) y)))
22. m: Label
23. (xL_2.tag(E)(x) = m)
24. ||L_1||n-1
25. L_1 tr
26. I(L_1)
27. ||L_1||n-1
28. L_1 tr
29. I(L_1)
30. (m:Label. P( < L_1 > _m)) I(L_1) P(L_1)
31. m1: Label
32. P( < tr > _m1)

< L_1 > _m1 < tr > _m1

By:
Unfold `tag_sublist` 0
THEN
BackThru Thm* P:(T), L2,L1:T List. L1 L2 filter(P;L1) filter(P;L2)


Generated subgoals:

None


About:
listnilassertintnatural_numbersubtractless_thanapplyfunction
equalpropimpliesandallexists

(31steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc