(22steps)
PrintForm
Definitions
Lemmas
mb
hybrid
Sections
GenAutomata
Doc
At:
switch
inv
rel
closure
lemma1
1
1.
E:
EventStruct
2.
tr:
|E| List
3.
ls:
||tr||
4.
is-send(E)(tr[ls])
5.
j:
||tr||. ls < j
is-send(E)(tr[j])
i,j:
||tr||. i
j
is-send(E)(tr[j])
(i (switchR(tr)^*) ls)
(j (switchR(tr)^*) ls)
By:
Assert (
n:
, i,j:
||tr||. i
j
is-send(E)(tr[i])
is-send(E)(tr[j])
(i switchR(tr)^n ls)
(j (switchR(tr)^*) ls))
Generated subgoals:
1
n:
, i,j:
||tr||. i
j
is-send(E)(tr[i])
is-send(E)(tr[j])
(i switchR(tr)^n ls)
(j (switchR(tr)^*) ls)
2
6.
n:
, i,j:
||tr||. i
j
is-send(E)(tr[i])
is-send(E)(tr[j])
(i switchR(tr)^n ls)
(j (switchR(tr)^*) ls)
i,j:
||tr||. i
j
is-send(E)(tr[j])
(i (switchR(tr)^*) ls)
(j (switchR(tr)^*) ls)
About:
(22steps)
PrintForm
Definitions
Lemmas
mb
hybrid
Sections
GenAutomata
Doc