(22steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc

At: switch inv rel closure lemma1 1 1

1. E: EventStruct
2. tr: |E| List
3. ls: ||tr||
4. is-send(E)(tr[ls])
5. j:||tr||. ls < j is-send(E)(tr[j])

n:, i,j:||tr||. ij is-send(E)(tr[i]) is-send(E)(tr[j]) (i switchR(tr)^n ls) (j (switchR(tr)^*) ls)

By: InductionOnNat

Generated subgoals:

16. i: ||tr||
7. j: ||tr||
8. ij
9. is-send(E)(tr[i])
10. is-send(E)(tr[j])
11. i switchR(tr)^0 ls
j (switchR(tr)^*) ls
26. n:
7. 0 < n
8. i,j:||tr||. ij is-send(E)(tr[i]) is-send(E)(tr[j]) (i switchR(tr)^n-1 ls) (j (switchR(tr)^*) ls)
9. i: ||tr||
10. j: ||tr||
11. ij
12. is-send(E)(tr[i])
13. is-send(E)(tr[j])
14. i switchR(tr)^n ls
j (switchR(tr)^*) ls


About:
listassertnatural_numberless_thanapplyimpliesall

(22steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc