At: switch inv rel closure lemma1112 1. E: EventStruct 2. tr: |E| List 3. ls: ||tr|| 4. is-send(E)(tr[ls]) 5. j:||tr||. ls < j is-send(E)(tr[j]) 6. n: 7. 0 < n 8. i,j:||tr||.
ij is-send(E)(tr[i]) is-send(E)(tr[j]) (i switchR(tr)^n-1 ls) (j (switchR(tr)^*) ls) 9. i: ||tr|| 10. j: ||tr|| 11. ij 12. is-send(E)(tr[i]) 13. is-send(E)(tr[j]) 14. i switchR(tr)^n ls
j (switchR(tr)^*) ls By: AssertBY (i switchR(tr)^n ls) Trivial
THEN
MoveToConcl -1
THEN
RecUnfold `rel_exp` 0
THEN
SplitOnConclITE
THEN
Try (Complete Auto)
THEN
Reduce 0
THEN
ExRepD Generated subgoal: