(22steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc

At: switch inv rel closure lemma1 1 1 2 1

1. E: EventStruct
2. tr: |E| List
3. ls: ||tr||
4. is-send(E)(tr[ls])
5. j:||tr||. ls < j is-send(E)(tr[j])
6. n:
7. 0 < n
8. i,j:||tr||. ij is-send(E)(tr[i]) is-send(E)(tr[j]) (i switchR(tr)^n-1 ls) (j (switchR(tr)^*) ls)
9. i: ||tr||
10. j: ||tr||
11. ij
12. is-send(E)(tr[i])
13. is-send(E)(tr[j])
14. i switchR(tr)^n ls
15. n = 0
16. z: ||tr||
17. i switchR(tr) z
18. z switchR(tr)^n-1 ls

j (switchR(tr)^*) ls

By:
AssertBY ((i (switchR(tr)^*) ls) & (z (switchR(tr)^*) ls)) ((Unfold `rel_star` 0) THEN (Reduce 0) THEN (AutoInstConcl []))
THEN
Analyze -1


Generated subgoal:

119. i (switchR(tr)^*) ls
20. z (switchR(tr)^*) ls
j (switchR(tr)^*) ls


About:
listassertintnatural_numbersubtractless_thanapplyequalimpliesandall

(22steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc