(22steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc

At: switch inv rel closure lemma1 1 1 1

1. E: EventStruct
2. tr: |E| List
3. ls: ||tr||
4. is-send(E)(tr[ls])
5. j:||tr||. ls < j is-send(E)(tr[j])
6. i: ||tr||
7. j: ||tr||
8. ij
9. is-send(E)(tr[i])
10. is-send(E)(tr[j])
11. i switchR(tr)^0 ls

j (switchR(tr)^*) ls

By:
ReduceExp -1
THEN
BackThru Thm* x,y:T, R:(TTProp). x = y (x (R^*) y)
THEN
SupposeNot
THEN
AllHyps (h.InstHyp [j] h)


Generated subgoals:

None


About:
listassertnatural_numberless_thanapplyimpliesall

(22steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc