is mentioned by
Thm* (x,y:T. Dec(P(x,y))) Thm* Thm* (x,y:T. P(x,y) P(y,x)) Thm* Thm* (L':T List. Thm* ((L (swap adjacent[P(x,y)]^*) L') & (i:(||L'||-1). P(L'[i],L'[(i+1)]))) | [partial_sort] |
Thm* (x,y:T. P(x,y) P(y,x)) Thm* Thm* (L':T List. Thm* ((L guarded_permutation(T;L,i. P(L[i],L[(i+1)])) L') Thm* (& (i:(||L'||-1). P(L'[i],L'[(i+1)]))) | [partial_sort_exists_2] |
Thm* count(x < y in swap(L;n;n+1) | P(x,y)) Thm* = Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) -1 else 0 fi+if P(L[(n+1)] Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) -1 else 0 fi+if P,L[n]) Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) -1 else 0 fi+if 1 Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) -1 else 0 fi+else 0 fi | [count_pairs_swap] |
Thm* (x R^k y) Thm* Thm* (L:T List. Thm* (||L|| = k+1 & L[0] = x & last(L) = y & (i:k. L[i] R L[(i+1)])) | [rel_exp_list] |
Thm* (L:T List, i:(||L||-1). Thm* (P(L,i) P(swap(L;i;i+1),i) & m(swap(L;i;i+1))<m(L)) Thm* Thm* (L:T List. Thm* (L':T List. Thm* ((L guarded_permutation(T;L,i. P(L,i)) L') & (i:(||L'||-1). P(L',i))) | [partial_sort_exists] |
Thm* Trans(T List)(_1 guarded_permutation(T;P) _2) | [guarded_permutation_transitivity] |
[map_swap] | |
Thm* a before b swap(L;i;i+1) a before b L a = L[(i+1)] & b = L[i] | [l_before_swap] |
Thm* i+1<||L|| Thm* Thm* (X,Y:A List. Thm* (L = (X @ [L[i]; L[(i+1)]] @ Y) Thm* (& swap(L;i;i+1) = (X @ [L[(i+1)]; L[i]] @ Y)) | [swap_adjacent_decomp] |
Thm* swap([x / L];i;j) = [x / swap(L;i-1;j-1)] | [swap_cons] |
Thm* L2 = swap(L1;i;j) Thm* Thm* L2[i] = L1[j] & L2[j] = L1[i] & ||L2|| = ||L1|| & L1 = swap(L2;i;j) Thm* & (x:||L2||. x = i x = j L2[x] = L1[x]) | [swapped_select] |
[swap_swap] | |
[swap_length] | |
[swap_select] | |
[permute_list_length] | |
[permute_list_select] | |
Thm* (x:||L||. Dec(P(x))) Thm* Thm* (i:||L||. P(i)) (i:||L||. P(i) & (j:||L||. i<j P(j))) | [last_with_property] |
Thm* (x:||L||. Dec(P(x))) Thm* Thm* (L1,L2:T List, f1:(||L1||||L||), f2:(||L2||||L||). Thm* (interleaving_occurence(T;L1;L2;L;f1;f2) Thm* (& (i:||L1||. P(f1(i))) & (i:||L2||. P(f2(i))) Thm* (& (i:||L||. Thm* (& ((P(i) (j:||L1||. f1(j) = i)) Thm* (& (& (P(i) (j:||L2||. f2(j) = i)))) | [interleaving_split] |
Thm* increasing(f;n) Thm* Thm* (L1:T List. ||L1|| = n & sublist_occurence(T;L1;L;f)) | [range_sublist] |
Def == i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List | [swap_adjacent] |
Def == sum(if (i<j)P(L[i];L[j]) 1 else 0 fi | i < ||L||; j < ||L||) | [count_pairs] |
Def == (L1,L2. i:(||L1||-1). P(L1,i) & L2 = swap(L1;i;i+1) T List)^* | [guarded_permutation] |
[permute_list] | |
Def == ||L|| = ||L1||+||L2|| Def == & increasing(f1;||L1||) & (j:||L1||. L1[j] = L[(f1(j))] T) Def == & increasing(f2;||L2||) & (j:||L2||. L2[j] = L[(f2(j))] T) Def == & (j1:||L1||, j2:||L2||. f1(j1) = f2(j2) ) | [interleaving_occurence] |
Def == ||L|| = ||L1||+||L2|| & disjoint_sublists(T;L1;L2;L) | [interleaving] |
Def == f1:(||L1||||L||), f2:(||L2||||L||). Def == increasing(f1;||L1||) & (j:||L1||. L1[j] = L[(f1(j))] T) Def == & increasing(f2;||L2||) & (j:||L2||. L2[j] = L[(f2(j))] T) Def == & (j1:||L1||, j2:||L2||. f1(j1) = f2(j2)) | [disjoint_sublists] |
Def == increasing(f;||L1||) & (j:||L1||. L1[j] = L2[(f(j))] T) | [sublist_occurence] |
In prior sections: list 1 mb basic mb nat mb list 1
Try larger context:
MarkB generic
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html