is mentioned by
Thm* Bij( Thm* Thm* Bij( Thm* Thm* sum(f(p(x),q(y)) | x < n; y < m) = sum(f(x,y) | x < n; y < m) | [permute_double_sum] |
Thm* Bij( | [permute_sum] |
| [permute_by_flips] | |
| [flip_adjacent] | |
Thm* compose_flips(L1) o compose_flips(L2) = compose_flips(L1 @ L2) | [compose_flips_append] |
| [compose_flips_wf] | |
Thm* | [flip_lemma] |
| [decidable__rel_star] | |
| [rel_star_finite] | |
Thm* (x R^k y) Thm* Thm* ( Thm* (||L|| = k+1 | [rel_exp_list] |
Thm* ( Thm* (P(L,i) Thm* Thm* ( Thm* ( Thm* ((L guarded_permutation(T; | [partial_sort_exists] |
| [count_pairs_wf] | |
Thm* i+1<||L|| Thm* Thm* ( Thm* (L = (X @ [L[i]; L[(i+1)]] @ Y) Thm* (& swap(L;i;i+1) = (X @ [L[(i+1)]; L[i]] @ Y)) | [swap_adjacent_decomp] |
Thm* increasing(f;n) Thm* Thm* ( | [range_sublist] |
Def == ||L|| = ||L1||+||L2|| Def == & increasing(f1;||L1||) & ( Def == & increasing(f2;||L2||) & ( Def == & ( | [interleaving_occurence] |
Def == ||L|| = ||L1||+||L2|| | [interleaving] |
In prior sections: int 1 bool 1 int 2 num thy 1 list 1 sqequal 1 mb nat mb list 1
Try larger context:
MarkB generic
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html