PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: mn 23 lem 1 2 2 1 3 2 1 1 2 1

1. Alph: Type
2. R: Alph*Alph*Prop
3. Fin(Alph)
4. EquivRel x,y:Alph*. x R y
5. Fin(x,y:Alph*//(x R y))
6. x,y,z:Alph*. (x R y) ((z @ x) R (z @ y))
7. g: (x,y:Alph*//(x R y))
8. Fin((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))
9. a:Alph, x:x,y:Alph*//(x R y). a.x x,y:Alph*//(x R y)
10. fL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))*
11. t:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))). (x.x/x1,x2.(g(x1)) = (g(x2)))(t) mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));t;fL)
12. < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > ActionSet(Alph)
13. TBL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))*
14. s:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))). mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));s;TBL) (w:Alph*. mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));( < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)) ,a,xy. xy/x,y. < a.x,a.y > > :ws);fL))
15. x: x,y:Alph*//(x R y)
16. y: x,y:Alph*//(x R y)
17. w: Alph*
18. s1: x,y:Alph*//(x R y)
19. s2: x,y:Alph*//(x R y)
20. u: Alph
21. v: Alph*
22. ( < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > :v < s1,s2 > ) = < v@s1,v@s2 >

(( < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > :v < s1,s2 > )/x,y. < u.x,u.y > ) = < u.v@s1,u.v@s2 >

By:
RWH (HypC -1) 0
THEN
Unfold `mn_quo_append` 0
THEN
Reduce 0
THEN
Fold `mn_quo_append` 0
THEN
BackThru 9


Generated subgoals:

None


About:
equalproductquotientlistspreadpair
lambdaconsuniversefunctionpropall
impliesboolmemberassertapplyexists