PrintForm
Definitions
myhill
nerode
Sections
AutomataTheory
Doc
At:
mn
23
lem
1
1
1
1
2
1
1
2
2
2
2
1
1
1
1
1
1.
Alph:
Type
2.
R:
Alph*
Alph*
Prop
3.
Fin(Alph)
4.
EquivRel x,y:Alph*. x R y
5.
Fin(x,y:Alph*//(x R y))
6.
x,y,z:Alph*. (x R y)
((z @ x) R (z @ y))
7.
g:
(x,y:Alph*//(x R y))
8.
x:
x,y:Alph*//(x R y)
9.
y:
x,y:Alph*//(x R y)
10.
< (x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)),
a,p. p/x,y. < a.x,a.y > >
ActionSet(Alph)
11.
Fin((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))
12.
x:((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y))), y:Alph*. ( < (x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)),
a,p. p/x,y. < a.x,a.y > > :y
x) = (x/x1,x2. < y@
x1,y@
x2 > )
13.
RL:
((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))*
14.
s:((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y))). (
w:Alph*. ( < x,y > /x1,x2. < w@
x1,w@
x2 > ) = s)
mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y));s;RL)
15.
x@0:
Alph*
16.
(g(x@0@
x)) =
(g(x@0@
y)) = false
( < x@0@
x,x@0@
y > /p1,p2.(g(p1)) =
(g(p2))) = false
& mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)); < x@0@
x,x@0@
y > ;RL)
By:
Reduce 0
Generated subgoal:
1
mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)); < x@0@
x,x@0@
y > ;RL)
About: