At: mn 23 lem 1 1 1 1 2 1 1 2 2 2 2 1 1 2 1 1 1
1. Alph: Type
2. R: Alph*
Alph*
Prop
3. Fin(Alph)
4. EquivRel x,y:Alph*. x R y
5. Fin(x,y:Alph*//(x R y))
6.
x,y,z:Alph*. (x R y) 
((z @ x) R (z @ y))
7. g: (x,y:Alph*//(x R y))


8. x: x,y:Alph*//(x R y)
9. y: x,y:Alph*//(x R y)
10. Fin((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))
11. RL: ((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))*
Dec(
p:((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y))). (p/p1,p2.(g(p1)) =
(g(p2))) = false
& False)
By:
Sel 2 (Analyze 0)
THEN
Analyze 0
THEN
Analyze -1
THEN
ProveProp
Generated subgoals:None
About: