At: mn 23 lem 1 1 1 1 2 1 1 2 2 2 2 1 1 2 1 2 1 1 1
1. Alph: Type
2. R: Alph*
Alph*
Prop
3. Fin(Alph)
4. EquivRel x,y:Alph*. x R y
5. Fin(x,y:Alph*//(x R y))
6.
x,y,z:Alph*. (x R y) 
((z @ x) R (z @ y))
7. g: (x,y:Alph*//(x R y))


8. x: x,y:Alph*//(x R y)
9. y: x,y:Alph*//(x R y)
10. Fin((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))
11. RL: ((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))*
12. u: (x,y:Alph*//(x R y))
(x,y:Alph*//(x R y))
13. v: ((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))*
14. Dec(
p:((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y))).
(p/p1,p2.(g(p1)) =
(g(p2))) = false
& mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y));p;v))
15. (u/u1,u2.(g(u1)) =
(g(u2))) = false
u = u
mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y));u;v)
By:
Sel 1 (Analyze 0)
THEN
Eq
Generated subgoals:None
About: