At: mn 23 lem 111121122221121222 1. Alph: Type 2. R: Alph*Alph*Prop 3. Fin(Alph) 4. EquivRel x,y:Alph*. x R y 5. Fin(x,y:Alph*//(x R y)) 6. x,y,z:Alph*. (x R y) ((z @ x) R (z @ y)) 7. g: (x,y:Alph*//(x R y)) 8. x: x,y:Alph*//(x R y) 9. y: x,y:Alph*//(x R y) 10. Fin((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))) 11. RL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))* 12. u: (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)) 13. v: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))* 14. (p:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))).
(p/p1,p2.(g(p1)) = (g(p2))) = false & mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));p;v)) 15. (u/u1,u2.(g(u1)) = (g(u2))) = false
Dec(p:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))).
(p/p1,p2.(g(p1)) = (g(p2))) = false
& u = p mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));p;v)) By: Sel 2 (Analyze 0) Generated subgoal: