Nuprl Lemma : binrel_ap_functionality_wrt_breqv

[T:Type]. ∀[r,r':T ⟶ T ⟶ ℙ].  ∀a,b:T.  ((r <≡>{T} r')  (a [r] ⇐⇒ [r'] b))


Proof




Definitions occuring in Statement :  binrel_ap: [r] b binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  binrel_ap: [r] b binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[r,r':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}a,b:T.    ((r  <\mequiv{}>\{T\}  r')  {}\mRightarrow{}  (a  [r]  b  \mLeftarrow{}{}\mRightarrow{}  a  [r']  b))



Date html generated: 2016_05_15-PM-00_00_40
Last ObjectModification: 2015_12_26-PM-11_26_35

Theory : gen_algebra_1


Home Index