Nuprl Lemma : p_equiv_wf

[T:Type]. ∀[A,B:T ⟶ ℙ].  (A ≡{T} B ∈ ℙ)


Proof




Definitions occuring in Statement :  p_equiv: A ≡{T} B uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  p_equiv: A ≡{T} B uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  and_wf p_subset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[A,B:T  {}\mrightarrow{}  \mBbbP{}].    (A  \mequiv{}\{T\}  B  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_00_18
Last ObjectModification: 2015_12_26-PM-11_26_52

Theory : gen_algebra_1


Home Index