Nuprl Lemma : p_subset_wf

[T:Type]. ∀[A,B:T ⟶ ℙ].  (A ⊆{T} B ∈ ℙ)


Proof




Definitions occuring in Statement :  p_subset: A ⊆{T} B uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  p_subset: A ⊆{T} B uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[A,B:T  {}\mrightarrow{}  \mBbbP{}].    (A  \msubseteq{}\{T\}  B  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_00_16
Last ObjectModification: 2015_12_26-PM-11_26_49

Theory : gen_algebra_1


Home Index