Nuprl Lemma : sp_refl_cl_le_rel
∀[T:Type]. ∀[r:T ⟶ T ⟶ ℙ].  ((ro\) ≡>{T} r)
Proof
Definitions occuring in Statement : 
s_part: E\
, 
refl_cl: Eo
, 
binrel_le: E ≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
refl_cl: Eo
, 
s_part: E\
, 
binrel_le: E ≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
and_wf, 
or_wf, 
equal_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
unionElimination, 
equalitySymmetry, 
independent_functionElimination, 
inlFormation, 
voidElimination
Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((r\msupzero{}\mbackslash{})  \mequiv{}>\{T\}  r)
Date html generated:
2016_05_15-PM-00_02_08
Last ObjectModification:
2015_12_26-PM-11_25_40
Theory : gen_algebra_1
Home
Index