Nuprl Lemma : sp_refl_cl_le_rel

[T:Type]. ∀[r:T ⟶ T ⟶ ℙ].  ((ro\) ≡>{T} r)


Proof




Definitions occuring in Statement :  s_part: E\ refl_cl: Eo binrel_le: E ≡>{T} E' uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  refl_cl: Eo s_part: E\ binrel_le: E ≡>{T} E' uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: or: P ∨ Q not: ¬A false: False
Lemmas referenced :  and_wf or_wf equal_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination hypothesisEquality hypothesis applyEquality functionEquality cumulativity universeEquality unionElimination equalitySymmetry independent_functionElimination inlFormation voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((r\msupzero{}\mbackslash{})  \mequiv{}>\{T\}  r)



Date html generated: 2016_05_15-PM-00_02_08
Last ObjectModification: 2015_12_26-PM-11_25_40

Theory : gen_algebra_1


Home Index