Nuprl Lemma : xxrefl_functionality_wrt_breqv

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R <≡>{T} R')  (refl(T;R) ⇐⇒ refl(T;R')))


Proof




Definitions occuring in Statement :  xxrefl: refl(T;E) binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  xxrefl: refl(T;E) binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q all: x:A. B[x]
Lemmas referenced :  all_wf iff_wf refl_wf refl_functionality_wrt_iff
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality independent_pairFormation because_Cache addLevel productElimination impliesFunctionality independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  R')  {}\mRightarrow{}  (refl(T;R)  \mLeftarrow{}{}\mRightarrow{}  refl(T;R')))



Date html generated: 2016_05_15-PM-00_00_47
Last ObjectModification: 2015_12_26-PM-11_26_43

Theory : gen_algebra_1


Home Index