Nuprl Lemma : comb_for_mon_nat_op_wf2

λg,n,e,z. (n ⋅ e) ∈ g:IMonoid ⟶ n:|(<ℤ+>↓hgrp)| ⟶ e:|g| ⟶ (↓True) ⟶ |g|


Proof




Definitions occuring in Statement :  int_add_grp: <ℤ+> mon_nat_op: n ⋅ e hgrp_of_ocgrp: g↓hgrp imon: IMonoid grp_car: |g| squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: imon: IMonoid
Lemmas referenced :  mon_nat_op_wf2 squash_wf true_wf grp_car_wf hgrp_of_ocgrp_wf int_add_grp_wf2 imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setElimination rename

Latex:
\mlambda{}g,n,e,z.  (n  \mcdot{}  e)  \mmember{}  g:IMonoid  {}\mrightarrow{}  n:|(<\mBbbZ{}+>\mdownarrow{}hgrp)|  {}\mrightarrow{}  e:|g|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |g|



Date html generated: 2016_05_15-PM-00_19_54
Last ObjectModification: 2015_12_26-PM-11_37_46

Theory : groups_1


Home Index