Nuprl Lemma : int_add_grp_wf2
<ℤ+> ∈ OGrp
Proof
Definitions occuring in Statement : 
int_add_grp: <ℤ+>
, 
ocgrp: OGrp
, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
ocgrp: OGrp
, 
uall: ∀[x:A]. B[x]
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bfalse: ff
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
int_add_grp: <ℤ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_le: ≤b
, 
pi2: snd(t)
, 
grp_eq: =b
, 
grp_op: *
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
monot: monot(T;x,y.R[x; y];f)
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
connex: Connex(T;x,y.R[x; y])
, 
cancel: Cancel(T;S;op)
, 
inverse: Inverse(T;op;id;inv)
, 
grp_inv: ~
, 
grp_id: e
, 
cand: A c∧ B
Lemmas referenced : 
inverse_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
ulinorder_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
uall_wf, 
monot_wf, 
int_add_grp_wf, 
subtype_rel_sets, 
mon_wf, 
comm_wf, 
set_wf, 
ulinorder_functionality_wrt_iff, 
le_int_wf, 
le_wf, 
assert_of_le_int, 
less_than'_wf, 
assert_witness, 
monot_functionality, 
iff_weakening_uiff, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformand_wf, 
int_formula_prop_and_lemma, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__or, 
intformor_wf, 
int_formula_prop_or_lemma, 
iff_imp_equal_bool, 
eq_int_wf, 
band_wf, 
equal-wf-base, 
int_subtype_base, 
assert_of_eq_int, 
iff_transitivity, 
assert_of_band, 
iff_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
itermMinus_wf, 
itermConstant_wf, 
int_term_value_minus_lemma, 
int_term_value_constant_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
productEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
instantiate, 
setEquality, 
cumulativity, 
independent_pairFormation, 
intEquality, 
isect_memberFormation, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
voidElimination, 
addEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
computeAll, 
functionExtensionality, 
addLevel, 
impliesFunctionality, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
<\mBbbZ{}+>  \mmember{}  OGrp
Date html generated:
2017_10_01-AM-08_16_56
Last ObjectModification:
2017_02_28-PM-02_02_34
Theory : groups_1
Home
Index