Nuprl Lemma : ulinorder_functionality_wrt_iff
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  uiff(R[x;y];R'[x;y])) 
⇒ (UniformLinorder(T;x,y.R[x;y]) 
⇐⇒ UniformLinorder(T;x,y.R'[x;y])))
Proof
Definitions occuring in Statement : 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
connex: Connex(T;x,y.R[x; y])
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
uorder_wf, 
connex_wf, 
uall_wf, 
isect_wf, 
subtype_rel_self, 
uiff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
promote_hyp, 
cut, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
introduction, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
inlFormation, 
inrFormation, 
productEquality, 
extract_by_obid, 
lambdaEquality, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    uiff(R[x;y];R'[x;y]))
    {}\mRightarrow{}  (UniformLinorder(T;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  UniformLinorder(T;x,y.R'[x;y])))
Date html generated:
2019_06_20-PM-00_29_38
Last ObjectModification:
2018_08_25-AM-08_23_09
Theory : rel_1
Home
Index