Nuprl Lemma : ulinorder_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  uiff(R[x;y];R'[x;y]))  (UniformLinorder(T;x,y.R[x;y]) ⇐⇒ UniformLinorder(T;x,y.R'[x;y])))


Proof




Definitions occuring in Statement :  ulinorder: UniformLinorder(T;x,y.R[x; y]) uiff: uiff(P;Q) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q ulinorder: UniformLinorder(T;x,y.R[x; y]) iff: ⇐⇒ Q and: P ∧ Q uorder: UniformOrder(T;x,y.R[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) member: t ∈ T so_apply: x[s1;s2] utrans: UniformlyTrans(T;x,y.E[x; y]) uimplies: supposing a uiff: uiff(P;Q) subtype_rel: A ⊆B uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) all: x:A. B[x] or: P ∨ Q prop: guard: {T} so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  uorder_wf connex_wf uall_wf isect_wf subtype_rel_self uiff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin promote_hyp cut hypothesis isectElimination hypothesisEquality independent_functionElimination independent_isectElimination applyEquality because_Cache sqequalRule introduction isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination inlFormation inrFormation productEquality extract_by_obid lambdaEquality instantiate functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    uiff(R[x;y];R'[x;y]))
    {}\mRightarrow{}  (UniformLinorder(T;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  UniformLinorder(T;x,y.R'[x;y])))



Date html generated: 2019_06_20-PM-00_29_38
Last ObjectModification: 2018_08_25-AM-08_23_09

Theory : rel_1


Home Index