Nuprl Lemma : hgrp_of_ocgrp_wf

[g:OGrp]. (g↓hgrp ∈ GrpSig)


Proof




Definitions occuring in Statement :  hgrp_of_ocgrp: g↓hgrp ocgrp: OGrp grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hgrp_of_ocgrp: g↓hgrp grp_sig: GrpSig ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a hgrp_car: |g|+ all: x:A. B[x]
Lemmas referenced :  hgrp_car_wf grp_eq_wf subtype_rel_dep_function grp_car_wf bool_wf subtype_rel_self grp_le_wf grp_op_wf2 grp_id_wf2 ocgrp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache applyEquality sqequalRule lambdaEquality functionEquality independent_isectElimination lambdaFormation productEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:OGrp].  (g\mdownarrow{}hgrp  \mmember{}  GrpSig)



Date html generated: 2016_05_15-PM-00_14_16
Last ObjectModification: 2015_12_26-PM-11_41_12

Theory : groups_1


Home Index