Nuprl Lemma : hgrp_of_ocgrp_wf
∀[g:OGrp]. (g↓hgrp ∈ GrpSig)
Proof
Definitions occuring in Statement : 
hgrp_of_ocgrp: g↓hgrp
, 
ocgrp: OGrp
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hgrp_of_ocgrp: g↓hgrp
, 
grp_sig: GrpSig
, 
ocgrp: OGrp
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
hgrp_car: |g|+
, 
all: ∀x:A. B[x]
Lemmas referenced : 
hgrp_car_wf, 
grp_eq_wf, 
subtype_rel_dep_function, 
grp_car_wf, 
bool_wf, 
subtype_rel_self, 
grp_le_wf, 
grp_op_wf2, 
grp_id_wf2, 
ocgrp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
independent_isectElimination, 
lambdaFormation, 
productEquality, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:OGrp].  (g\mdownarrow{}hgrp  \mmember{}  GrpSig)
Date html generated:
2016_05_15-PM-00_14_16
Last ObjectModification:
2015_12_26-PM-11_41_12
Theory : groups_1
Home
Index